Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Integral inequalities for some convex functions via generalized fractional integrals

Authors: Naila Mehreen, Matloob Anwar

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we obtain the Hermite–Hadamard type inequalities for s-convex functions and m-convex functions via a generalized fractional integral, known as Katugampola fractional integral, which is the generalization of Riemann–Liouville fractional integral and Hadamard fractional integral. We show that through the Katugampola fractional integral we can find a Hermite–Hadamard inequality via the Riemann–Liouville fractional integral.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

A function \(f:I\rightarrow \mathbb{R}\), where I is an interval of real numbers, is called convex if the following inequality holds:
$$ f\bigl(ta+(1-t)b\bigr)\leq tf(a)+(1-t)f(b) $$
(1)
for all \(a,b\in I\) and \(t\in [0,1]\). Function f is called concave if −f is convex.
The Hermite–Hadamard inequality [4] for convex functions \(f:I\rightarrow \mathbb{R}\) on an interval of real line is defined as
$$ f\biggl(\frac{a+b}{2}\biggr)\leq \frac{1}{b-a} \int^{b}_{a}f(x)\,dx\leq \frac{f(a)+f(b)}{2}, $$
(2)
where \(a,b\in I\) with \(a< b\).
Since the Hermite–Hadamard inequality has many applications, many authors generalized this inequality. The Hermite–Hadamard inequality is also established for several kinds of convex functions. For more results and generalizations, see [2, 6, 1014]. The Hermite–Hadamard inequality (2) is not only established for the classical integral but also for fractional integrals (e.g., see [1, 7, 18, 22]), for conformable fractional integrals (e.g., see [19, 21]), and recently for generalized fractional integrals (e.g., see [8, 9]).
Definition 1.1
([5])
Let \(s\in (0,1]\). A function \(f:I\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\), where \(\mathbb{R}_{+}=[0,\infty)\), is called s-convex function in the second sense if
$$ f\bigl(ta+(1-t)b\bigr)\leq t^{s}f(a)+(1-t)^{s}f(b) $$
(3)
for all \(a,b\in I\) and \(t\in [0,1]\).
Definition 1.2
([3, 23])
A function \(f:[0,b]\rightarrow \mathbb{R}\), with \(b>0\), is said to be m-convex if the following inequality holds:
$$ f\bigl(ta+m(1-t)c\bigr)\leq tf(a)+m(1-t)f(c) $$
(4)
for all \(a,c\in [0,b]\) and \(t\in [0,1]\) and for all \(m\in [0,1]\). f is m-concave if −f is m-convex.
Definition 1.3
([15])
Let \(\alpha >0\) with \(n-1<\alpha \leq n\), \(n\in \mathbb{N}\), and \(1< x< b\). The left- and right-hand side Riemann–Liouville fractional integrals of order α of function f are given by
$$ J^{\alpha }_{a+}f(x)=\frac{1}{\Gamma (\alpha)} \int_{a}^{x}(x-t)^{ \alpha -1}f(t)\,dt, $$
and
$$ J^{\alpha }_{b-}f(x)=\frac{1}{\Gamma (\alpha)} \int_{x}^{b}(t-x)^{ \alpha -1}f(t)\,dt, $$
respectively, where \(\Gamma (\alpha)\) is the gamma function defined by \(\Gamma (\alpha)=\int_{0}^{\infty }e^{-t}t^{\alpha -1}\,dt\).
Definition 1.4
([16])
Let \(\alpha >0\) with \(n-1<\alpha \leq n\), \(n\in \mathbb{N}\), and \(1< x< b\). The left- and right-hand side Hadamard fractional integrals of order α of function f are given by
$$ H^{\alpha }_{a+}f(x)=\frac{1}{\Gamma (\alpha)} \int_{a}^{x} \biggl( \ln \frac{x}{t} \biggr) ^{\alpha -1}\frac{f(t)}{t}\,dt, $$
and
$$ H^{\alpha }_{b-}f(x)=\frac{1}{\Gamma (\alpha)} \int_{x}^{b} \biggl( \ln \frac{t}{x} \biggr) ^{\alpha -1}\frac{f(t)}{t}\,dt. $$
Definition 1.5
([9])
Let \([a,b]\subset \mathbb{R}\) be a finite interval. Then the left- and right-hand side Katugampola fractional integrals of order \(\alpha (>0)\) of \(f\in X^{p}_{c}(a,b)\) are defined by
$$ {}^{\rho }I^{\alpha }_{a+}f(x)= \frac{\rho^{1-\alpha }}{\Gamma (\alpha)} \int_{a}^{x}\bigl(x^{\rho }-t^{ \rho } \bigr)^{\alpha -1}t^{\rho -1}f(t)\,dt $$
and
$$ {}^{\rho }I^{\alpha }_{b-}f(x)= \frac{\rho^{1-\alpha }}{\Gamma (\alpha)} \int_{x}^{b}\bigl(t^{\rho }-x^{ \rho } \bigr)^{\alpha -1}t^{\rho -1}f(t)\,dt, $$
with \(a< x< b\) and \(\rho >0\), where \(X^{p}_{c}(a,b)\) (\(c\in \mathbb{R}\), \(1\leq p\leq \infty \) ) is the space of those complex-valued Lebesgue measurable functions f on \([a,b]\) for which \(\|f\|_{X^{p}_{c}}<\infty \), where the norm is defined by
$$ \Vert f \Vert _{X^{p}_{c}}= \biggl( \int_{a}^{b} \bigl\vert t^{c}f(t) \bigr\vert ^{p}\frac{dt}{t} \biggr) ^{1/p}< \infty $$
for \(1\leq p<\infty \), \(c\in \mathbb{R}\) and for the case \(p=\infty \),
$$ \Vert f \Vert _{X^{\infty }_{c}}= \mathop{\operatorname{ess\,sup}} _{a\leq t\leq b}\bigl[t^{c} \bigl\vert f(t) \bigr\vert \bigr], $$
where ess sup stands for essential supremum.
Theorem 1.6
([9])
Let \(\alpha >0\) and \(\rho >0\). Then, for \(x>a\),
1.
\(\lim_{\rho \rightarrow 1} ^{\rho }I^{\alpha }_{a+}f(x)=J^{ \alpha }_{a+}f(x)\),
 
2.
\(\lim_{\rho \rightarrow 0+} ^{\rho }I^{\alpha }_{a+}f(x)=H^{ \alpha }_{a+}f(x)\).
 
Lemma 1.7
([20])
For \(0<\alpha \leq 1\) and \(0\leq a< b\), we have
$$ \bigl\vert a^{\alpha }-b^{\alpha } \bigr\vert \leq (b-a)^{\alpha }. $$
We recall the classical beta functions:
$$ \beta (a,b)= \int_{0}^{1}x^{a-1}(1-x)^{b-1} \,dx. $$
We introduce the following generalization of beta function:
$$ ^{\rho }\gamma (a,b)= \int_{0}^{1}\bigl(x^{\rho } \bigr)^{a-1}\bigl(1-x^{\rho }\bigr)^{b-1}x ^{\rho -1}\,dx. $$
Note that as \(\rho \rightarrow 1\) then \(^{\rho }\gamma (a,b)\rightarrow \beta (a,b)\).
In this paper, we give the Hermite–Hadamard type inequalities for s-convex functions and for m-convex functions via generalized fractional integral. Throughout the paper, \(X^{p}_{c}(a,b)\) (\(c \in \mathbb{R}\), \(1\leq p\leq \infty \)) is the space as defined in Definition 1.5 and \(L_{1}[a,b]\) stands for the space of Lebesgue integrable over the closed interval \([a,b]\) where a, b are some real numbers with \(a< b\).

2 Hermite–Hadamard type inequalities for s-convex function

In this section we give Hermite–Hadamard type inequalities for s-convex function.
Theorem 2.1
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an s-convex function on \([a^{\rho },b^{\rho }]\), then the following inequalities hold:
$$\begin{aligned} 2^{s-1}f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) &\leq \frac{\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\ & \leq \biggl[ \frac{\alpha }{\alpha +s}+\alpha \beta (\alpha,s+1) \biggr] \frac{f(a^{\rho })+f(b^{\rho })}{2}, \end{aligned}$$
(5)
where the fractional integrals are considered for the function \(f(x^{\rho })\) and evaluated at a and b, respectively.
Proof
Let \(t\in [0,1]\). Consider \(x,y\in [a,b]\), \(a\geq 0\), defined by \(x^{\rho }=t^{\rho }a^{\rho }+(1-t^{\rho })b^{\rho }\), \(y^{\rho }=t ^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho }\). Since f is an s-convex function on \([a^{\rho },b^{\rho }]\), we have
$$ f \biggl( \frac{x^{\rho }+y^{\rho }}{2} \biggr) \leq \frac{f(x^{\rho })+f(y ^{\rho })}{2^{s}}. $$
Then we have
$$ 2^{s}f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) \leq f \bigl(t^{\rho }a^{ \rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)+f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t^{\rho }\bigr)a ^{\rho }\bigr). $$
(6)
Multiplying both sides of (6) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain
$$\begin{aligned} \frac{2^{s}}{\alpha \rho }f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) \leq& \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b ^{\rho }\bigr)\,dt + \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\,dt \\ =& \int_{b}^{a} \biggl( \frac{b^{\rho }-x^{\rho }}{b^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}f\bigl(x^{\rho }\bigr)\frac{x^{\rho -1}}{a^{\rho }-b^{\rho }}\,dx \\ &{}+ \int_{a}^{b} \biggl( \frac{y^{\rho }-a^{\rho }}{b^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}f\bigl(y^{\rho }\bigr)\frac{y^{\rho -1}}{b^{\rho }-a^{\rho }}\,dy \\ =&\frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] . \end{aligned}$$
(7)
This establishes the first inequality. For the proof of the second inequality in (5), we first observe that for an s-convex function f, we have
$$ f\bigl(t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)\leq \bigl( t^{\rho } \bigr) ^{s}f \bigl(a^{\rho }\bigr)+ \bigl( 1-t^{\rho } \bigr) ^{s}f \bigl(b^{\rho }\bigr) $$
and
$$ f\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr)\leq \bigl( t^{\rho } \bigr) ^{s}f \bigl(b^{\rho }\bigr)+ \bigl( 1-t^{\rho } \bigr) ^{s}f \bigl(a^{\rho }\bigr). $$
By adding these inequalities, we get
$$ f\bigl(t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)+f\bigl(t^{\rho }b^{\rho }+\bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\leq \bigl( \bigl( t^{\rho } \bigr) ^{s}+ \bigl( 1-t ^{\rho } \bigr) ^{s} \bigr) \bigl[ f\bigl(a^{\rho }\bigr)+f\bigl(b^{\rho }\bigr) \bigr] . $$
(8)
Multiplying both sides of (8) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain
$$\begin{aligned}& \frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \\& \quad \leq \int^{1}_{0}t^{\alpha \rho -1} \bigl( \bigl( t^{ \rho } \bigr) ^{s}+ \bigl( 1-t^{\rho } \bigr) ^{s} \bigr) \bigl[ f\bigl(a^{ \rho }\bigr)+f\bigl(b^{\rho } \bigr) \bigr]\,dt. \end{aligned}$$
(9)
Since
$$ \int^{1}_{0}t^{\alpha \rho +s\rho -1}\,dt= \frac{1}{\rho (\alpha +s)}, $$
and by choosing the change of variable \(t^{\rho }=z\), we have
$$ \int^{1}_{0}t^{\alpha \rho -1} \bigl( 1-t^{\rho } \bigr) ^{s}\,dt= \frac{ \beta (\alpha,s+1)}{\rho }. $$
Thus (9) becomes
$$ \frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \leq \frac{1}{\rho } \biggl[ \frac{1}{\alpha +s}+ \beta ( \alpha,s+1) \biggr] \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). $$
(10)
Thus (7) and (10) give (5). □
Remark 2.2
By letting \(\rho \rightarrow 1\) in (5) of Theorem 2.1, we get Theorem 3 of [22].
Theorem 2.3
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) with \(0\leq a< b\). If \(|f'|\) is s-convex on \([a^{\rho },b^{\rho }]\), then the following inequality holds:
$$\begin{aligned}& \biggl\vert \frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[{} ^{\rho }I^{ \alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a^{\rho }\bigr) \bigr] \biggr\vert \\& \quad \leq \frac{b^{\rho }-a^{\rho }}{2} \biggl[ \frac{1}{\alpha +s+1}+ \beta (\alpha +1,s+1) \biggr] \bigl( \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr). \end{aligned}$$
(11)
Proof
From (7) one can have
$$\begin{aligned} &\frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\ &\quad = \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b ^{\rho }\bigr)\,dt + \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\,dt. \end{aligned}$$
(12)
Integrating by parts, we get
$$\begin{aligned}& \frac{f(a^{\rho })+f(b^{\rho })}{\alpha \rho }-\frac{\rho^{\alpha -1} \Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I ^{\alpha }_{a+}f\bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\& \quad =\frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr)-f'\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr]\,dt. \end{aligned}$$
(13)
By using the triangle inequality and s-convexity of \(|f'|\) and the change of variable \(t^{\rho }=z\), we obtain
$$\begin{aligned} & \biggl\vert \frac{f(a^{\rho })+f(b^{\rho }}{\alpha \rho }-\frac{ \rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[{} ^{\rho }I^{\alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \biggr\vert \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl\vert \bigl[ f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr) -f'\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr] \bigr\vert \,dt \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl\vert f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(t ^{\rho }a^{\rho }+\bigl(1-t^{\rho }\bigr)b^{\rho } \bigr) \bigr\vert \bigr]\,dt \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl(t^{\rho }\bigr)^{s} \bigl\vert f' \bigl(b^{\rho }\bigr) \bigr\vert +\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert \\ &\qquad {}+\bigl(t^{\rho }\bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert +\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr]\,dt \\ &\quad =\frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl(t^{\rho }\bigr)^{s}+\bigl(1-t^{\rho } \bigr)^{s} \bigr] \bigl[ \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b ^{\rho }\bigr) \bigr\vert \bigr]\,dt \\ &\quad =\frac{b^{\rho }-a^{\rho }}{\alpha \rho } \biggl[ \frac{1}{\alpha +s+1}+ \beta (\alpha +1,s+1) \biggr] \bigl[ \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr] . \end{aligned}$$
(14)
 □
Corollary 2.4
Under the same assumptions of Theorem 2.3.
1.
If \(\rho =1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{b-a}{2} \biggl[ \frac{1}{\alpha +s+1}+\beta (\alpha +1,s+1) \biggr] \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). \end{aligned}$$
(15)
 
2.
If \(\rho =s=1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{b-a}{2} \biggl[ \frac{1}{\alpha +2}+\beta (\alpha +1,2) \biggr] \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). \end{aligned}$$
(16)
 
3.
If \(\rho =s=\alpha =1\), then
$$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b}f(x)\,dx \biggr\vert \leq \frac{b-a}{4} \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). $$
(17)
 
In order to prove our further results, we need the following lemma.
Lemma 2.5
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) with \(0\leq a< b\). Then the following equality holds if the fractional integrals exist:
$$\begin{aligned}& \frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{\rho^{\alpha }\Gamma ( \alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\& \quad =\frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl[ \bigl(1-t^{\rho } \bigr)^{ \alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr] t^{\rho -1}f'\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt. \end{aligned}$$
(18)
Proof
By using the similar arguments as in the proof of Lemma 2 in [18]. First consider
$$\begin{aligned} & \int_{0}^{1}\bigl(1-t^{\rho } \bigr)^{\alpha }t^{\rho -1}f'\bigl(t^{\rho }a^{\rho }+ \bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr)\,dt \\ &\quad =\frac{(1-t^{\rho })^{\alpha }f(t^{\rho }a^{\rho }+(1-t^{\rho })b ^{\rho })}{\rho (a^{\rho }-b^{\rho })}\bigg|_{0}^{1} \\ &\qquad {} +\frac{\alpha }{a ^{\rho }-b^{\rho }} \int_{0}^{1}\bigl(1-t^{\rho } \bigr)^{\alpha -1}t^{\rho -1}f\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt \\ &\quad =\frac{f(b^{\rho })}{\rho (b^{\rho }-a^{\rho })}-\frac{\alpha }{b ^{\rho }-a^{\rho }} \int_{b}^{a} \biggl( \frac{x^{\rho }-a^{\rho }}{b ^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}\cdot \frac{x^{\rho -1}}{a^{ \rho }-b^{\rho }}\,dx \\ &\quad =\frac{f(b^{\rho })}{\rho (b^{\rho }-a^{\rho })}-\frac{\rho^{\alpha -1}\Gamma (\alpha +1)}{(b^{\rho }-a^{\rho })^{\alpha +1}}\cdot{}^{ \rho }I_{b-}^{\alpha }f \bigl(x^{\rho }\bigr)\bigg|_{x=a}. \end{aligned}$$
(19)
Similarly, we can show that
$$\begin{aligned}& \int_{0}^{1}t^{\rho \alpha }\cdot t^{\rho -1}f'\bigl(t^{\rho }a^{\rho }+\bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr)\,dt \\& \quad = - \frac{f(a^{\rho })}{\rho (b^{\rho }-a^{\rho })}+ \frac{\rho^{\alpha -1} \Gamma (\alpha +1)}{(b^{\rho }-a^{\rho })^{\alpha +1}}\cdot^{\rho }I _{a+}^{\alpha }f \bigl(x^{\rho }\bigr)\bigg|_{x=b}. \end{aligned}$$
(20)
Thus from (19) and (20) we get (18). □
Remark 2.6
By taking \(\rho =1\) in (18) of Lemma 2.5, we get Lemma 2 in [17].
Throughout all other results we denote
$$ I_{f}(\alpha,\rho,a,b)=\frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{ \rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] . $$
Theorem 2.7
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) such that \(f'\in L_{1}[a,b]\) with \(0\leq a< b\). If \(|f'|^{q}\) is s-convex on \([a^{\rho },b^{\rho }]\) for some fixed \(q\geq 1\), then the following inequality holds:
$$\begin{aligned} \bigl\vert I_{f}(\alpha,\rho,a,b) \bigr\vert \leq{}& \frac{\rho (b^{\rho }-a ^{\rho })}{2}\biggl(\frac{1}{\rho (\alpha +1)}\biggr)^{1-1/q} \\ &{}\times \biggl( \biggl( {}^{\rho }\gamma (s+1,\alpha +1)+ \frac{1}{\rho ( \alpha +s+1)} \biggr) \bigl\vert f'\bigl(a^{\rho } \bigr) \bigr\vert ^{q} \\ &{}+ \bigl( {}^{\rho }\gamma (1,\alpha +s+1)+ {}^{\rho }\gamma (\alpha +1,s+1) \bigr) \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
(21)
Proof
Using Lemma 2.5 and the power mean inequality and s-convexity of \(|f'|^{q}\), we obtain
$$\begin{aligned} & \bigl\vert I_{f}(\alpha,\rho,a,b) \bigr\vert \\ &\quad = \biggl\vert \frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1}f'\bigl(t^{ \rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt \biggr\vert \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1} \bigl\vert \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\vert t^{\rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\vert \bigl(1-t^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{ \alpha } \bigr\vert t^{\rho -1} \bigl\vert f'\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{ \rho }\bigr) \bigr\vert ^{q} \,dt \biggr) ^{1/q} \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{ \alpha } \bigr\} t^{\rho -1} \bigl[\bigl(t^{\rho }\bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert ^{q}+ \bigl(1-t ^{\rho }\bigr)^{s} \bigl\vert f' \bigl(b^{\rho }\bigr) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{1/q} \\ &\quad =\frac{\rho (b^{\rho }-a^{\rho })}{2}\biggl(\frac{1}{\rho (\alpha +1)} \biggr)^{1-1/q} \\ &\qquad {}\times \biggl( \biggl( {}^{\rho }\gamma (s+1,\alpha +1)+\frac{1}{\rho ( \alpha +s+1)} \biggr) \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert ^{q} \\ &\qquad {}+ \bigl( {}^{\rho }\gamma (1,\alpha +s+1)+ {}^{\rho }\gamma (\alpha +1,s+1) \bigr) \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
(22)
Hence the proof is completed. □
Corollary 2.8
Under the similar conditions of Theorem 2.7.
1.
If \(\rho =1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{ (b-a)}{2}\biggl(\frac{1}{(\alpha +1)}\biggr)^{1-1/q} \times \biggl( \biggl( \beta (s+1,\alpha +1)+\frac{1}{(\alpha +s+1)} \biggr) \bigl\vert f'(a) \bigr\vert ^{q} \\ &\qquad {}+ \bigl(\beta (1,\alpha +s+1)+ \beta (\alpha +1,s+1) \bigr) \bigl\vert f'(b) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
 
2.
If \(\rho =s=1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{ (b-a)}{2}\biggl(\frac{1}{(\alpha +1)}\biggr)^{1-1/q} \times \biggl( \biggl( \beta (2,\alpha +1)+\frac{1}{(\alpha +2)} \biggr) \bigl\vert f'(a) \bigr\vert ^{q} \\ &\qquad {}+ \bigl(\beta (1,\alpha +2)+ \beta (\alpha +1,2) \bigr) \bigl\vert f'(b) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
 
3.
If \(\rho =s=\alpha =1\), then
$$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b} f(x)\,dx \biggr\vert \leq \frac{ (b-a)}{2^{2-1/q}} \times \biggl( \frac{ \vert f'(a) \vert ^{q} + \vert f'(b) \vert ^{q}}{2} \biggr) ^{1/q}. $$
 
Theorem 2.9
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) such that \(f'\in L_{1}[a,b]\) with \(0\leq a< b\). If \(|f'|^{q}\) is s-convex on \([a^{\rho },b^{\rho }]\) for some fixed \(q\geq 1\), then the following inequality holds:
$$\begin{aligned} & \bigl\vert I_{f}(\alpha, \rho,a,b) \bigr\vert \\ &\quad \leq \frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \biggl( \biggl[ \beta (s+1, \alpha +1)+ \frac{1}{\alpha +s+1} \biggr] \bigl[ \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert ^{q}+ \bigl\vert f'\bigl(b^{ \rho }\bigr) \bigr\vert ^{q}\bigr] \biggr) ^{1/q}. \end{aligned}$$
(23)
Proof
Using Lemma 2.5, the property of modulus, the power mean inequality, and the fact that \(|f'|^{q}\) is an s-convex function, we have
$$\begin{aligned} & \bigl\vert I_{f}(\alpha, \rho,a,b) \bigr\vert \\ &\quad \leq \biggl\vert \frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1} \bigl\vert f'\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr\vert \,dt \biggr\vert \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1}t^{ \rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{ \alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} \bigl\vert f'\bigl(t^{\rho }a^{\rho }+\bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr) \bigr\vert ^{q}\,dt \biggr) ^{1/q} \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2}\frac{1}{\rho^{1-1/q}} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} \bigl[ \bigl(t^{\rho }\bigr)^{s} \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert ^{q}+\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(b ^{\rho }\bigr) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{1/q} \\ &\quad =\frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \biggl( \bigl\vert f' \bigl(a^{ \rho }\bigr) \bigr\vert ^{q} \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(t^{\rho }\bigr)^{s} + \bigl(t^{\rho }\bigr)^{\alpha }\bigl(t^{\rho } \bigr)^{s} \bigr\} \,dt \\ &\qquad {}+ \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(1-t ^{\rho }\bigr)^{s} + \bigl(t^{\rho }\bigr)^{\alpha }\bigl(1-t^{\rho } \bigr)^{s} \bigr\} \,dt \biggr)^{1/q} \\ &\quad =\frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \bigl( A \bigl\vert f' \bigl(a^{ \rho }\bigr) \bigr\vert ^{q}+B \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \bigr) ^{1/q}. \end{aligned}$$
(24)
By using the change of variable \(t^{\rho }=z\), we get
$$ A= \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(t^{\rho }\bigr)^{s} + \bigl(t^{ \rho }\bigr)^{\alpha }\bigl(t^{\rho } \bigr)^{s} \bigr\} \,dt=\beta (s+1,\alpha +1)+\frac{1}{ \alpha +s+1} $$
and
$$ B= \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(1-t^{\rho }\bigr)^{s} + \bigl(t^{ \rho }\bigr)^{\alpha }\bigl(1-t^{\rho } \bigr)^{s} \bigr\} \,dt=\beta (\alpha +1,s+1)+\frac{1}{ \alpha +s+1}. $$
Thus substituting the values of A and B in (24) and applying the fact that \(\beta (a,b)=\beta (b,a)\), we get the desired result. □
Corollary 2.10
Under the similar conditions of Theorem 2.7.
1.
If \(\rho =1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)}{2} \biggl( \biggl[ \beta (s+1,\alpha +1)+ \frac{1}{ \alpha +s+1} \biggr] \bigl[ \bigl\vert f'(a) \bigr\vert ^{q}+ \bigl\vert f'(b) \bigr\vert ^{q} \bigr] \biggr) ^{1/q}. \end{aligned}$$
 
2.
If \(\rho =s=1\), then
$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)}{2} \biggl( \biggl[ \beta (2,\alpha +1)+ \frac{1}{ \alpha +2} \biggr] \bigl[ \bigl\vert f'(a) \bigr\vert ^{q}+ \bigl\vert f'(b) \bigr\vert ^{q} \bigr] \biggr) ^{1/q}. \end{aligned}$$
 
3.
If \(\rho =s=\alpha =1\), then
$$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b} f(x)\,dx \biggr\vert \leq \frac{(b-a)}{2} \biggl( \frac{ \vert f'(a) \vert ^{q}+ \vert f'(b) \vert ^{q}}{2} \biggr) ^{1/q}. $$
 

3 Hermite–Hadamard type inequalities for m-convex function

In this section we give Hermite–Hadamard type inequalities for m-convex function.
Theorem 3.1
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an m-convex function on \([a^{\rho },b^{\rho }]\), then the following inequalities hold:
$$\begin{aligned} f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) & \leq \frac{\rho^{\alpha }\Gamma (\alpha +1)}{2((mb)^{\rho }-(ma)^{ \rho })^{\alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr) \\ & \leq \frac{m^{\rho }}{2} \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). \end{aligned}$$
(25)
Proof
Since f is m-convex, we have
$$ f \biggl( \frac{x^{\rho }+m^{\rho }y^{\rho }}{2} \biggr) \leq \frac{f(x ^{\rho })+m^{\rho }f(y^{\rho })}{2}. $$
Let \(x^{\rho }=m^{\rho }t^{\rho }a^{\rho }+m^{\rho }(1-t^{\rho })b ^{\rho }\), \(y^{\rho }=t^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho }\) with \(t\in [0,1]\). Then we obtain
$$ f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) \leq \frac{f(m ^{\rho }t^{\rho }a^{\rho }+m^{\rho }(1-t^{\rho })b^{\rho }) +m^{ \rho }f(t^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho })}{2}. $$
(26)
Multiplying both sides of (26) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain
$$\begin{aligned} &\frac{2}{\rho \alpha }f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) \\ &\quad \leq \int_{0}^{1}t^{\alpha \rho -1}f\bigl(m^{\rho }t^{\rho }a^{\rho }+m ^{\rho }\bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt+ m^{\rho } \int_{0}^{1}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t^{\rho }\bigr)a^{\rho }\bigr)\,dt \\ &\quad = \int_{mb}^{ma} \biggl( \frac{x^{\rho }-(mb)^{\rho }}{(ma)^{\rho }-(mb)^{ \rho }} \biggr) ^{\alpha -1} x^{\rho -1}\frac{dx}{(ma)^{\rho }-(mb)^{ \rho }} \\ &\qquad {}+m^{\rho } \int_{a}^{b} \biggl( \frac{y^{\rho }-a^{\rho }}{b^{\rho }-a ^{\rho }} \biggr) ^{\alpha -1} y^{\rho -1} \frac{dy}{b^{\rho }-a^{\rho }} \\ &\quad =\frac{\rho^{\alpha -1}\Gamma (\alpha)}{((mb)^{\rho }-(ma)^{\rho })^{ \alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr). \end{aligned}$$
(27)
Now by multiplying both sides of (27) by \(\frac{\alpha \rho }{2}\), we get the first inequality of (25). For the second inequality, using m-convexity of f, we have
$$ f\bigl(m^{\rho }t^{\rho }a^{\rho }+m^{\rho } \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) +m^{ \rho }f\bigl( \bigl(1-t^{\rho }\bigr)a^{\rho }+t^{\rho }b^{\rho } \bigr) \leq m^{\rho } \bigl[ f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr] . $$
(28)
Multiplying both sides of (28) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain
$$\begin{aligned} &\frac{\rho^{\alpha -1}\Gamma (\alpha)}{((mb)^{\rho }-(ma)^{\rho })^{ \alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr) \\ &\quad \leq \frac{m^{\rho }}{\rho \alpha } \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). \end{aligned}$$
(29)
Now, by multiplying both sides of (29) by \(\frac{\alpha \rho }{2}\), we get the second inequality of (25). □
Corollary 3.2
Under the assumptions of Theorem 3.1, we have
1.
For \(\rho =1\), then
$$\begin{aligned} &f \biggl( \frac{m(a+b)}{2} \biggr) \\ &\quad \leq \frac{\Gamma (\alpha +1)}{2(mb-ma)^{\alpha }} J_{ma+}^{\alpha }f(mb)+ \frac{m\Gamma (\alpha +1)}{2(b-a)^{\alpha }} J_{b-}^{\alpha }f ( a ) \\ &\quad \leq \frac{m}{2} \bigl( f(a)+f(b) \bigr). \end{aligned}$$
(30)
 
2.
For \(\rho =\alpha =1\), then
$$\begin{aligned} f \biggl( \frac{m(a+b)}{2} \biggr) &\leq \frac{1}{2(mb-ma)} \int_{ma}^{mb}f(x)\,dx +\frac{m}{2(b-a)} \int_{a}^{b}f(x)\,dx \\ & \leq \frac{m}{2} \bigl( f(a)+f(b) \bigr). \end{aligned}$$
(31)
 
Remark 3.3
If we take \(m=1\) in (31) of Corollary (3.2)(2), then we get (2).
Theorem 3.4
Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an m-convex function on \([a^{\rho },b^{\rho }]\). Let \(F(x^{\rho },y ^{\rho })_{t^{\rho }}:[0,1]\rightarrow \mathbb{R}\) be defined as
$$ F\bigl(x^{\rho },y^{\rho }\bigr)_{t^{\rho }}=\frac{1}{2} \bigl[ f\bigl(t^{\rho }x^{ \rho }+m^{\rho } \bigl(1-t^{\rho }\bigr)y^{\rho }\bigr) +f\bigl(\bigl(1-t^{\rho } \bigr)x^{\rho }+m ^{\rho }t^{\rho }y^{\rho }\bigr) \bigr] . $$
Then we have
$$\begin{aligned} &\frac{1}{(b^{\rho }-a^{\rho })^{\alpha }} \int_{a}^{b}\bigl(b^{\rho }-u ^{\rho } \bigr)^{\alpha -1}u^{\rho -1} F \biggl( u^{\rho },\frac{a^{\rho }+b ^{\rho }}{2} \biggr) _{ ( \frac{b^{\rho }-u^{\rho }}{b^{\rho }-a^{ \rho }} ) }\,du \\ &\quad \leq \frac{\rho^{\alpha -1}\Gamma (\alpha)}{2(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{a+}^{\alpha }f \bigl(b^{\rho }\bigr)+\frac{m}{2\rho \alpha }f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr). \end{aligned}$$
(32)
Proof
Since f is an m-convex function, we have
$$\begin{aligned} F\bigl(x^{\rho },y^{\rho } \bigr)_{t^{\rho }} &\leq \frac{1}{2} \bigl[ t^{\rho }f\bigl(x ^{\rho }\bigr)+m^{\rho }\bigl(1-t^{\rho }\bigr)f \bigl(y^{\rho }\bigr) +\bigl(1-t^{\rho }\bigr)f\bigl(x^{ \rho } \bigr)+m^{\rho }t^{\rho }f\bigl(y^{\rho }\bigr) \bigr] \\ & =\frac{1}{2} \bigl[ f\bigl(x^{\rho }\bigr)+m^{\rho }f \bigl(y^{\rho }\bigr) \bigr] , \end{aligned}$$
and also
$$ F \biggl( x^{\rho },\frac{a^{\rho }+b^{\rho }}{2} \biggr) _{t^{\rho }} \leq \frac{1}{2} \biggl[ f\bigl(x^{\rho }\bigr)+m^{\rho }f \biggl( \frac{a^{\rho }+b ^{\rho }}{2} \biggr) \biggr] . $$
Take \(x^{\rho }=t^{\rho }a^{\rho }+(1-t^{\rho })b^{\rho }\), we have
$$ F \biggl( t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho },\frac{a^{\rho }+b ^{\rho }}{2} \biggr) _{t^{\rho }}\leq \frac{1}{2} \biggl[ f\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)+m^{\rho }f \biggl( \frac{a^{\rho }+b^{ \rho }}{2} \biggr) \biggr] . $$
(33)
Multiplying both sides of (33) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain
$$\begin{aligned} & \int_{0}^{1}t^{\alpha \rho -1}F \biggl( t^{\rho }a^{\rho }+\bigl(1-t^{\rho }\bigr)b ^{\rho }, \frac{a^{\rho }+b^{\rho }}{2} \biggr) _{t^{\rho }}\,dt \\ &\quad \leq \frac{1}{2} \int_{0}^{1}t^{\alpha \rho -1} \biggl[ f \bigl(t^{\rho }a ^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr) +m^{\rho }f \biggl( \frac{a^{\rho }+b ^{\rho }}{2} \biggr) \biggr]\,dt. \end{aligned}$$
(34)
Then, by the change of variable \(u^{\rho }=t^{\rho }a^{\rho }+(1-t ^{\rho })b^{\rho }\), we get the desired inequality (32). □
Remark 3.5
By taking \(\rho =1\) in (32) of Theorem 3.4, we get Theorem 6 in [22].

4 Applications to special means

In this section, we consider some applications to our results. Here we consider the following means:
(1)
The arithmetic mean:
$$ A(a,b)=\frac{a+b}{2}; \quad a,b\in \mathbb{R}. $$
 
(2)
The logarithmic mean:
$$ L(a,b)=\frac{\ln \vert b \vert -\ln \vert a \vert }{b-a}; \quad a,b\in \mathbb{R}, \vert a \vert \neq \vert b \vert , a,b\neq 0. $$
 
(3)
The generalized log mean:
$$ L_{n}(a,b)= \biggl[ \frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)} \biggr] ^{1/n} ;\quad a,b\in \mathbb{R}, n\in \mathbb{Z}\setminus \{-1,0\}, a,b\neq 0. $$
 
Proposition 4.1
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\), then
$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2}A \bigl( \vert a \vert ^{n-1}, \vert b \vert ^{n-1} \bigr). $$
(35)
Proof
By taking \(f(x)=x^{n}\) in Corollary 2.4(3), we get the required result. □
Proposition 4.2
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\). Then, for \(q\geq 1\), we have
$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2^{2-1/q}}A^{1/q} \bigl( \vert a \vert ^{q(n-1)}, \vert b \vert ^{q(n-1)} \bigr). $$
(36)
Proof
By taking \(f(x)=x^{n}\) in Corollary 2.8(3), we get the required result. □
Proposition 4.3
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\). Then, for \(q\geq 1\), we have
$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2}A^{1/q} \bigl( \vert a \vert ^{q(n-1)}, \vert b \vert ^{q(n-1)} \bigr). $$
(37)
Proof
By taking \(f(x)=x^{n}\) in Corollary 2.10(3), we get the required result. □
Proposition 4.4
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(m\in [0,1]\), then we have
$$ f\bigl(mA(a,b)\bigr)\leq \frac{1}{2}L_{n}^{n}(ma,mb)+ \frac{m}{2}L_{n}^{n}(a,b) \leq mA \bigl(a^{n},b^{n}\bigr). $$
(38)
Proof
By taking \(f(x)=x^{n}\) in Corollary 3.2(2), we get the required result. □
Proposition 4.5
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), then
$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2}A \bigl( \vert a \vert ^{-2}, \vert b \vert ^{-2} \bigr). $$
(39)
Proof
By taking \(f(x)=\frac{1}{x}\) in Corollary 2.4(3), we get the required result. □
Proposition 4.6
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\). Then, for \(q\geq 1\), we have
$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2^{2-1/q}}A^{1/q} \bigl( \vert a \vert ^{-2q}, \vert b \vert ^{-2q} \bigr). $$
(40)
Proof
By taking \(f(x)=\frac{1}{x}\) in Corollary 2.8(3), we get the required result. □
Proposition 4.7
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\). Then, for \(q\geq 1\), we have
$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2}A^{1/q} \bigl( \vert a \vert ^{-2q}, \vert b \vert ^{-2q} \bigr). $$
(41)
Proof
By taking \(f(x)=\frac{1}{x}\) in Corollary 2.10(3), we get the required result. □
Proposition 4.8
Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(m\in [0,1]\), then we have
$$ f\bigl(mA\bigl(a^{-1},b^{-1}\bigr)\bigr)\leq \frac{1}{2}L(ma,mb)+\frac{m}{2}L(a,b)\leq mA\bigl(a ^{-1},b^{-1}\bigr). $$
(42)
Proof
By taking \(f(x)=\frac{1}{x}\) in Corollary 3.2(2), we get the required result. □

5 Conclusion

In Sect. 2, some Hermite–Hadamard type inequalities for s-convex functions in a generalized fractional form were obtained. In Corollaries 2.4, 2.8, and 2.10, we obtained some new results related to s-convex functions, convex functions via Riemann–Liouville fractional integrals and via classical integrals. In Sect. 3, we established a Hermite–Hadamard type inequality for m-convex functions in generalized fractional integrals. In Corollary 3.2, a new Hermite–Hadamard type inequality for m-convex functions via Riemann–Liouville fractional integrals and via classical integrals was proved.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Chen, F.: Extension of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015) MathSciNet Chen, F.: Extension of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015) MathSciNet
2.
go back to reference Dragomir, S.S.: Hermite–Hadamard’s type inequality for operator convex functions. Appl. Math. Comput. 218(3), 766–772 (2011) MathSciNetMATH Dragomir, S.S.: Hermite–Hadamard’s type inequality for operator convex functions. Appl. Math. Comput. 218(3), 766–772 (2011) MathSciNetMATH
3.
go back to reference Dragomir, S.S., Toader, G.H.: Some inequalities for m-convex functions. Stud. Univ. Babeş–Bolyai, Math. 38, 21–28 (1993) MathSciNetMATH Dragomir, S.S., Toader, G.H.: Some inequalities for m-convex functions. Stud. Univ. Babeş–Bolyai, Math. 38, 21–28 (1993) MathSciNetMATH
4.
go back to reference Hadamard, J.: Etude sur les proprietes des fonctions entieres et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 58, 171–215 (1893) MATH Hadamard, J.: Etude sur les proprietes des fonctions entieres et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 58, 171–215 (1893) MATH
6.
go back to reference Iscan, I.: Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 43(6), 935–942 (2014) MathSciNetMATH Iscan, I.: Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 43(6), 935–942 (2014) MathSciNetMATH
7.
go back to reference Iscan, I., Wu, S.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 237, 237–244 (2014) MathSciNetMATH Iscan, I., Wu, S.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 237, 237–244 (2014) MathSciNetMATH
8.
go back to reference Jleli, M., O’Regan, D., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221–1230 (2016) MathSciNetCrossRef Jleli, M., O’Regan, D., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221–1230 (2016) MathSciNetCrossRef
9.
go back to reference Katugampola, U.N.: New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014) MathSciNetMATH Katugampola, U.N.: New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014) MathSciNetMATH
10.
go back to reference Latif, M.A., Shoaib, M.: Hermite–Hadamard type integral inequalities for differentiable m-preinvex and α, m-preinvex functions. J. Egypt. Math. Soc. 23(2), 236–241 (2015) MathSciNetCrossRefMATH Latif, M.A., Shoaib, M.: Hermite–Hadamard type integral inequalities for differentiable m-preinvex and α, m-preinvex functions. J. Egypt. Math. Soc. 23(2), 236–241 (2015) MathSciNetCrossRefMATH
11.
12.
go back to reference Noor, M.A.: On Hadamard integral inequalities involving two log-convex functions. J. Inequal. Pure Appl. Math. 8(3), 1–14 (2007) MathSciNet Noor, M.A.: On Hadamard integral inequalities involving two log-convex functions. J. Inequal. Pure Appl. Math. 8(3), 1–14 (2007) MathSciNet
13.
go back to reference Noor, M.A.: On Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 14, 167–173 (2009) MathSciNetMATH Noor, M.A.: On Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 14, 167–173 (2009) MathSciNetMATH
14.
go back to reference Ozdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via α, m-convexity. Comput. Math. Appl. 61(9), 2614–2620 (2011) MathSciNetCrossRefMATH Ozdemir, M.E., Avci, M., Kavurmaci, H.: Hermite–Hadamard-type inequalities via α, m-convexity. Comput. Math. Appl. 61(9), 2614–2620 (2011) MathSciNetCrossRefMATH
15.
go back to reference Podlubny, I.: Fractional Differential Equations: Mathematics in Science and Engineering. Academic Press, San Diego (1999) MATH Podlubny, I.: Fractional Differential Equations: Mathematics in Science and Engineering. Academic Press, San Diego (1999) MATH
16.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Amsterdam (1993) MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Amsterdam (1993) MATH
17.
go back to reference Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, H.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, H.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013) CrossRefMATH
18.
go back to reference Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9), 2403–2407 (2013) CrossRefMATH Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9), 2403–2407 (2013) CrossRefMATH
19.
go back to reference Set, E., Akdemir, A.O., Mumcu, I.: The Hermite–Hadamard’s inequality and its extensions for conformable fractional integrals of any order \(\alpha >0\) (2016). Preprint Set, E., Akdemir, A.O., Mumcu, I.: The Hermite–Hadamard’s inequality and its extensions for conformable fractional integrals of any order \(\alpha >0\) (2016). Preprint
20.
go back to reference Set, E., Ozdemir, M.E., Dragomir, S.S.: On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 12 (2010) MathSciNetMATH Set, E., Ozdemir, M.E., Dragomir, S.S.: On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010, 12 (2010) MathSciNetMATH
21.
go back to reference Set, E., Sarikaya, M.Z., Gozpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities (2016). Preprint Set, E., Sarikaya, M.Z., Gozpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities (2016). Preprint
22.
go back to reference Set, E., Sarikaya, M.Z., Ozdemir, M.E., Yaldirm, H.: The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 10(2), 69–83 (2014) MathSciNetCrossRefMATH Set, E., Sarikaya, M.Z., Ozdemir, M.E., Yaldirm, H.: The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results. J. Appl. Math. Stat. Inform. 10(2), 69–83 (2014) MathSciNetCrossRefMATH
23.
go back to reference Toader, G.H.: Some generalisations of the convexity. In: Proc. Colloq. Approx. Optim, pp. 329–338. Cluj-Napoca, Romania (1984) Toader, G.H.: Some generalisations of the convexity. In: Proc. Colloq. Approx. Optim, pp. 329–338. Cluj-Napoca, Romania (1984)
Metadata
Title
Integral inequalities for some convex functions via generalized fractional integrals
Authors
Naila Mehreen
Matloob Anwar
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1807-7

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner