Skip to main content
Top
Published in: Strength of Materials 6/2013

01-11-2013

Generation and Validation of Crack Growth Resistance Curve from DCB Specimens: An Experimental Study

Authors: V. Alfred Franklin, T. Christopher

Published in: Strength of Materials | Issue 6/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article examines fracture toughness and interlaminar failure load of double cantilever beam (DCB) specimens made of glass/epoxy of three different lay-ups. The present model requires the applied load–displacement history and crack extension to generate the crack growth resistance curve (R-curve). From the generated R-curve, the interface failure load was estimated for the specimens and good agreement with the experimentally recorded value was found.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Kamala Kannan, S. Rajendra Boopathy, and B. Nageswara Rao, “Fracture strength of various lay-ups of carbon/epoxy laminates using the modified inherent flaw model,” Eng. Fract. Mech., 75, 4834–4843 (2008).CrossRef V. Kamala Kannan, S. Rajendra Boopathy, and B. Nageswara Rao, “Fracture strength of various lay-ups of carbon/epoxy laminates using the modified inherent flaw model,” Eng. Fract. Mech., 75, 4834–4843 (2008).CrossRef
2.
go back to reference A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, Second edition, AIAA Education Series, USA (2004). A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, Second edition, AIAA Education Series, USA (2004).
3.
go back to reference M. F. S. F. de Moura, R. D. S. G. Campilho, A. M. Amaro, and P. N. B Reis, “Interlaminar and intralaminar fracture characterization of composites under mode I loading,” Compos. Struct., 92, 144–149 (2010). M. F. S. F. de Moura, R. D. S. G. Campilho, A. M. Amaro, and P. N. B Reis, “Interlaminar and intralaminar fracture characterization of composites under mode I loading,” Compos. Struct., 92, 144–149 (2010).
4.
go back to reference T. H. Walker, L. B. Ilcewicz , D. R. Polland, and C. C. Poe, Jr., “Tension fracture of laminates for transport fuselage. Pt. II: Large notches,” in: Proc. of the Third NASA Advanced Composites Technology Conference, NASA CP-3178, Part 2 (1992), pp. 727–758. T. H. Walker, L. B. Ilcewicz , D. R. Polland, and C. C. Poe, Jr., “Tension fracture of laminates for transport fuselage. Pt. II: Large notches,” in: Proc. of the Third NASA Advanced Composites Technology Conference, NASA CP-3178, Part 2 (1992), pp. 727–758.
5.
go back to reference T. H. Walker, L. B. Ilcewicz, D. R. Polland, et al., “Tension fracture of laminates for transport fuselage. Pt. III: Structural configurations,” in: Proc. of the Fourth NASA Advanced Composites Technology Conference, NASA CP-3229, Part 1 (1993), pp. 863–880. T. H. Walker, L. B. Ilcewicz, D. R. Polland, et al., “Tension fracture of laminates for transport fuselage. Pt. III: Structural configurations,” in: Proc. of the Fourth NASA Advanced Composites Technology Conference, NASA CP-3229, Part 1 (1993), pp. 863–880.
6.
go back to reference M. M. Shokrieh, M. Heidari-Rarani, and M. R. Ayatollahi, “Delamination R-curve as material property of unidirectional glass/epoxy composites,” Mater. Des., 34, 211–218 (2012).CrossRef M. M. Shokrieh, M. Heidari-Rarani, and M. R. Ayatollahi, “Delamination R-curve as material property of unidirectional glass/epoxy composites,” Mater. Des., 34, 211–218 (2012).CrossRef
7.
go back to reference Z. Suo, G. Bao, and B. Fan, “Delamination R-curve phenomena due to damage,” J. Mech. Phys. Solids, 40, 1–16 (1992).CrossRef Z. Suo, G. Bao, and B. Fan, “Delamination R-curve phenomena due to damage,” J. Mech. Phys. Solids, 40, 1–16 (1992).CrossRef
8.
go back to reference J. T. Wang, C. C. Poe, Jr., D. R. Ambur, and D. W. Sleight, “Residual strength prediction of damaged composite fuselage panel with R-curve method,” Compos. Sci. Technol., 66, 2557–2565 (2006).CrossRef J. T. Wang, C. C. Poe, Jr., D. R. Ambur, and D. W. Sleight, “Residual strength prediction of damaged composite fuselage panel with R-curve method,” Compos. Sci. Technol., 66, 2557–2565 (2006).CrossRef
9.
go back to reference V. Tamuzs, S. Tarasovs, and U. Vilks, “Progressive delamination and fiber bridging modelling in double cantilever beam composite specimens,” Eng. Fract. Mech., 68, 513–525 (2001).CrossRef V. Tamuzs, S. Tarasovs, and U. Vilks, “Progressive delamination and fiber bridging modelling in double cantilever beam composite specimens,” Eng. Fract. Mech., 68, 513–525 (2001).CrossRef
10.
go back to reference B. Nageswara Rao and A. R. Acharya, “Evaluation of fracture energy G Ic using a double cantilever beam fibre composite specimen,” Eng. Fract. Mech., 51, 317–322 (1995).CrossRef B. Nageswara Rao and A. R. Acharya, “Evaluation of fracture energy G Ic using a double cantilever beam fibre composite specimen,” Eng. Fract. Mech., 51, 317–322 (1995).CrossRef
11.
go back to reference V. Alfred Franklin and T. Christopher, “Fracture energy estimation of DCB specimens made of glass/epoxy: an experimental study,” Adv. Mater. Sci. Eng., Article ID 412601 (2013). V. Alfred Franklin and T. Christopher, “Fracture energy estimation of DCB specimens made of glass/epoxy: an experimental study,” Adv. Mater. Sci. Eng., Article ID 412601 (2013).
12.
go back to reference ASTM D5528-94a. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Continuous Fiber Reinforced Polymer Matrix Composites, Philadelphia, PA (1994), pp. 1–10. ASTM D5528-94a. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Continuous Fiber Reinforced Polymer Matrix Composites, Philadelphia, PA (1994), pp. 1–10.
13.
go back to reference C. C. Poe, Jr., C. E. Harris, T. W. Cotes, and T. H Walker, “Tension strength with discrete source damage,” in: Proc. of the Fifth NASA Advanced Composites Technology Conference, NASA CP-3294, Vol. I, Part 1 (1994), pp. 369–437. C. C. Poe, Jr., C. E. Harris, T. W. Cotes, and T. H Walker, “Tension strength with discrete source damage,” in: Proc. of the Fifth NASA Advanced Composites Technology Conference, NASA CP-3294, Vol. I, Part 1 (1994), pp. 369–437.
14.
go back to reference V. Q. Bui, E. Marechal, and H. Nguyen-Dang, “Imperfect interlaminar interfaces in laminated composites: delamination with the R-curve effect,” Compos. Sci. Technol., 60, 2619–2630 (2000).CrossRef V. Q. Bui, E. Marechal, and H. Nguyen-Dang, “Imperfect interlaminar interfaces in laminated composites: delamination with the R-curve effect,” Compos. Sci. Technol., 60, 2619–2630 (2000).CrossRef
15.
go back to reference T. K. Jacobsen and B. F. Sorensen, “Mode I intra-laminar crack growth in composites – modelling of R-curves from measured bridging laws,” Compos. Part A, 32, 1–11 (2001).CrossRef T. K. Jacobsen and B. F. Sorensen, “Mode I intra-laminar crack growth in composites – modelling of R-curves from measured bridging laws,” Compos. Part A, 32, 1–11 (2001).CrossRef
16.
go back to reference F. Ozdil and L. A. Carlsson, “Beam analysis of angle-ply laminate DCB specimens,” Compos. Sci. Technol., 59, 305–315 (1999).CrossRef F. Ozdil and L. A. Carlsson, “Beam analysis of angle-ply laminate DCB specimens,” Compos. Sci. Technol., 59, 305–315 (1999).CrossRef
17.
go back to reference J. J. Polaha, B. D. Davidson, R. C. Hudson, and A. Pieracci, “Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite,” J. Reinf. Plast. Compos., 15, 141–173 (1996). J. J. Polaha, B. D. Davidson, R. C. Hudson, and A. Pieracci, “Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite,” J. Reinf. Plast. Compos., 15, 141–173 (1996).
18.
go back to reference A. Laksimi, A. Ahmed Benyahia, M. L. Benzeggagh, and X. L. Gong, “Initiation and bifurcation mechanisms of cracks in multi-directional laminates,” Compos. Sci. Technol., 60, 597–604 (2000).CrossRef A. Laksimi, A. Ahmed Benyahia, M. L. Benzeggagh, and X. L. Gong, “Initiation and bifurcation mechanisms of cracks in multi-directional laminates,” Compos. Sci. Technol., 60, 597–604 (2000).CrossRef
19.
go back to reference N. S. Choi, A. J. Kinloch, and J. G. Williams, “Delamination fracture of multidirectional carbon-fibre/epoxy composites under mode I, mode II, and mixed-mode I/II loading,” J. Compos. Mater., 33, 73–100 (1999).CrossRef N. S. Choi, A. J. Kinloch, and J. G. Williams, “Delamination fracture of multidirectional carbon-fibre/epoxy composites under mode I, mode II, and mixed-mode I/II loading,” J. Compos. Mater., 33, 73–100 (1999).CrossRef
20.
go back to reference P. Robinson and D. Q. Song, “A modified DCB specimen for mode I testing of multidirectional laminates,” J. Compos. Mater., 26, No. 11, 1554–1577 (1985).CrossRef P. Robinson and D. Q. Song, “A modified DCB specimen for mode I testing of multidirectional laminates,” J. Compos. Mater., 26, No. 11, 1554–1577 (1985).CrossRef
21.
go back to reference R. L. Ramkumar and J. D Whitcomb, “Characterization of mode I and mixed mode delamination growth in T300/5208 graphite/epoxy,” in: W. S. Johnson (Ed.), Delamination and Debonding of Materials, ASTM STP 876, Philadelphia (1985), pp. 315–335. R. L. Ramkumar and J. D Whitcomb, “Characterization of mode I and mixed mode delamination growth in T300/5208 graphite/epoxy,” in: W. S. Johnson (Ed.), Delamination and Debonding of Materials, ASTM STP 876, Philadelphia (1985), pp. 315–335.
22.
go back to reference A. Laksimi, M. L. Benzeggagh, G. Jing, et al., “Mode I interlaminar fracture of symmetrical cross-ply composites,” Compos. Sci. Technol., 41, 147–164 (1991).CrossRef A. Laksimi, M. L. Benzeggagh, G. Jing, et al., “Mode I interlaminar fracture of symmetrical cross-ply composites,” Compos. Sci. Technol., 41, 147–164 (1991).CrossRef
23.
go back to reference A. B. de Morais, M. F. de Moura, A. T. Marques, and P. T. de Castro, “Mode-I interlaminar fracture of carbon/epoxy cross-ply composites,” Compos. Sci. Technol., 62, 679–686 (2002).CrossRef A. B. de Morais, M. F. de Moura, A. T. Marques, and P. T. de Castro, “Mode-I interlaminar fracture of carbon/epoxy cross-ply composites,” Compos. Sci. Technol., 62, 679–686 (2002).CrossRef
24.
go back to reference T. K. O’Brien, “Generic aspects of fatigue of composite materials,” J. Amer. Helicopter Soc., 32, No. 1, 13–18 (1987).CrossRef T. K. O’Brien, “Generic aspects of fatigue of composite materials,” J. Amer. Helicopter Soc., 32, No. 1, 13–18 (1987).CrossRef
25.
go back to reference L.-Y. Xu and C.-H. Kou, “Effect of interfacial interleaf to the interlaminar fracture and intralaminar fracture of a new BMI matrix composite system,” J. Reinf. Plast. Compos., 13, 509–540 (1994).CrossRef L.-Y. Xu and C.-H. Kou, “Effect of interfacial interleaf to the interlaminar fracture and intralaminar fracture of a new BMI matrix composite system,” J. Reinf. Plast. Compos., 13, 509–540 (1994).CrossRef
Metadata
Title
Generation and Validation of Crack Growth Resistance Curve from DCB Specimens: An Experimental Study
Authors
V. Alfred Franklin
T. Christopher
Publication date
01-11-2013
Publisher
Springer US
Published in
Strength of Materials / Issue 6/2013
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9503-9

Other articles of this Issue 6/2013

Strength of Materials 6/2013 Go to the issue

Premium Partners