Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Global Nonlinear Fitness Function for Protein Structures

Authors : Yun Xu, Changyu Hu, Yang Dai, Jie Liang

Published in: Health Informatics Data Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We examine the problem of constructing fitness landscape of proteins for generating amino acid sequences that would fold into an a priori determined structural fold. Such a landscape would be useful for engineering proteins with novel or enhanced biochemistry. It should be able to characterize the global fitness landscape of many proteins simultaneously, and can guide the search process to identify the correct protein sequences. We introduce two geometric views and propose a formulation using mixture of nonlinear Gaussian kernel functions. We aim to solve a simplified protein sequence design problem. Our goal is to distinguish each native sequence for a major portion of representative protein structures from a large number of alternative decoy sequences, each a fragment from proteins of different folds. The nonlinear fitness function developed discriminates perfectly a set of 440 native proteins from 14 million sequence decoys, while no linear fitness function can succeed in this task. In a blind test of unrelated proteins, the nonlinear fitness function misclassifies only 13 native proteins out of 194. This compares favorably with about 3–4 times more misclassifications when optimal linear functions are used. To significantly reduce the complexity of the nonlinear fitness function, we further constructed a simplified nonlinear fitness function using a rectangular kernel with a basis set of proteins and decoys chosen a priori. The full landscape for a large number of protein folds can be captured using only 480 native proteins and 3200 nonprotein decoys via a finite Newton method, compared to about 7000 proteins and decoys in the original nonlinear fitness function. A blind test of a simplified version of sequence design was carried out to discriminate simultaneously 428 native sequences with no significant sequence identity to any training proteins from 11 million challenging protein-like decoys. This simplified fitness function correctly classified 408 native sequences, with only 20 misclassifications (95% correct rate), which outperforms several other statistical linear fitness functions and optimized linear functions. Our results further suggested that for the task of global sequence design, the search space of protein shape and sequence can be effectively parameterized with a relatively small number of carefully chosen basis set of proteins and decoys. For example, the task of designing 428 selected nonhomologous proteins can be achieved using a basis set of about 3680 proteins and decoys. In addition, we showed that the overall landscape is not overly sensitive to the specific choice of the proteins and decoys. The construction of fitness landscape has broad implication in understanding molecular evolution, cellular epigenetic state, and protein structures. Our results can be generalized to construct other types of fitness landscape.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.A. Lazar, J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobi core of ubiquitin. Protein Sci. 6, 1167–1178 (1997)CrossRef G.A. Lazar, J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobi core of ubiquitin. Protein Sci. 6, 1167–1178 (1997)CrossRef
2.
go back to reference E. Anderson, Z. Bai, C Bischof, LAPACK Users’ Guide. (Society for Industrial Mathematics, 1999) E. Anderson, Z. Bai, C Bischof, LAPACK Users’ Guide. (Society for Industrial Mathematics, 1999)
4.
go back to reference U. Bastolla, J. Farwer, E.W. Knapp, M. Vendruscolo, How to guarantee optimal stability for most representative structures in the protein data bank. Proteins 44(2), 79–96 (2001)CrossRef U. Bastolla, J. Farwer, E.W. Knapp, M. Vendruscolo, How to guarantee optimal stability for most representative structures in the protein data bank. Proteins 44(2), 79–96 (2001)CrossRef
5.
go back to reference A. Ben-Naim, Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706 (1997)CrossRef A. Ben-Naim, Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706 (1997)CrossRef
6.
go back to reference M.R. Betancourt, D. Thirumalai, Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8, 361–369 (1999)CrossRef M.R. Betancourt, D. Thirumalai, Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8, 361–369 (1999)CrossRef
7.
go back to reference D.N. Bolon, S.L. Mayo, Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. U.S.A. 98(25), 14274–14279 (2001) D.N. Bolon, S.L. Mayo, Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. U.S.A. 98(25), 14274–14279 (2001)
9.
go back to reference T.L. Chiu, R.A. Goldstein, Optimizing energy potentials for success in protein tertiary structure prediction. Fold Des. 3, 223–228 (1998)CrossRef T.L. Chiu, R.A. Goldstein, Optimizing energy potentials for success in protein tertiary structure prediction. Fold Des. 3, 223–228 (1998)CrossRef
10.
go back to reference B.I. Dahiyat, S.L. Mayo, De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef B.I. Dahiyat, S.L. Mayo, De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef
11.
go back to reference W.F. DeGrado, C.M. Summa, V. Pavone, F. Nastri, A. Lombardi, De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999)CrossRef W.F. DeGrado, C.M. Summa, V. Pavone, F. Nastri, A. Lombardi, De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999)CrossRef
12.
go back to reference J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobic cores of proteins. Protein Sci. 19, 244–255 (1995) J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobic cores of proteins. Protein Sci. 19, 244–255 (1995)
13.
go back to reference J.M. Deutsch, T. Kurosky, New algorithm for protein design. Phys. Rev. Lett. 76(2), 323–326 (1996)CrossRef J.M. Deutsch, T. Kurosky, New algorithm for protein design. Phys. Rev. Lett. 76(2), 323–326 (1996)CrossRef
14.
go back to reference R.I. Dima, J.R. Banavar, A. Maritan, Scoring functions in protein folding and design. Protein Sci. 9, 812–819 (2000)CrossRef R.I. Dima, J.R. Banavar, A. Maritan, Scoring functions in protein folding and design. Protein Sci. 9, 812–819 (2000)CrossRef
15.
go back to reference K.E. Drexler, Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78, 5275–5278 (1981)CrossRef K.E. Drexler, Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78, 5275–5278 (1981)CrossRef
18.
go back to reference E.G. Emberly, N.S. Wingreen, C.Tang, Designability of alpha-helical proteins. Proc. Natl. Acad. Sci. U.S.A. 99(17), 11163–11168 (2002) E.G. Emberly, N.S. Wingreen, C.Tang, Designability of alpha-helical proteins. Proc. Natl. Acad. Sci. U.S.A. 99(17), 11163–11168 (2002)
19.
go back to reference M.S. Friedrichs, P.G. Wolynes, Toward protein tertiary structure recognition by means of associative memory hamiltonians. Science 246, 371–373 (1989)CrossRef M.S. Friedrichs, P.G. Wolynes, Toward protein tertiary structure recognition by means of associative memory hamiltonians. Science 246, 371–373 (1989)CrossRef
20.
go back to reference G. Fung, O.L. Mangasarian, Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55, 39–55 (2003)CrossRef G. Fung, O.L. Mangasarian, Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55, 39–55 (2003)CrossRef
21.
go back to reference G. Vriend, C. Sander, Quality control of protein models—directional atomic contact analysis. J. Appl. Cryst. 26, 47–60 (1993)CrossRef G. Vriend, C. Sander, Quality control of protein models—directional atomic contact analysis. J. Appl. Cryst. 26, 47–60 (1993)CrossRef
22.
go back to reference R. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. U.S.A. 89, 9029–9033 (1992)CrossRef R. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. U.S.A. 89, 9029–9033 (1992)CrossRef
23.
go back to reference M.H. Hao, H. Scheraga, Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9, 184–188 (1999)CrossRef M.H. Hao, H. Scheraga, Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9, 184–188 (1999)CrossRef
24.
go back to reference M.H. Hao, H.A. Scheraga, How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. 93(10), 4984–4989 (1996)CrossRef M.H. Hao, H.A. Scheraga, How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. 93(10), 4984–4989 (1996)CrossRef
25.
go back to reference R.B. Hill, D.P. Raleigh, A. Lombardi, W.F. DeGrado, De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33(11), 745–754 (2000)CrossRef R.B. Hill, D.P. Raleigh, A. Lombardi, W.F. DeGrado, De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33(11), 745–754 (2000)CrossRef
26.
go back to reference L. Holm, C. Ouzounis, C. Sander, G. Tuparev, G. Vriend, A database of protein structure families with common folding motifs. Protein Sci. (A publication of the Protein Society) 1(12), 1691–1698 (1992)CrossRef L. Holm, C. Ouzounis, C. Sander, G. Tuparev, G. Vriend, A database of protein structure families with common folding motifs. Protein Sci. (A publication of the Protein Society) 1(12), 1691–1698 (1992)CrossRef
27.
go back to reference C. Hu, X. Li, J. Liang, Developing optimal non-linear scoring function for protein design. Bioinformatics (Oxford, England) 20(17), 3080–3098 (2004) C. Hu, X. Li, J. Liang, Developing optimal non-linear scoring function for protein design. Bioinformatics (Oxford, England) 20(17), 3080–3098 (2004)
28.
go back to reference R.L. Jernigan, I. Bahar, Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6, 195–209 (1996)CrossRef R.L. Jernigan, I. Bahar, Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6, 195–209 (1996)CrossRef
29.
go back to reference L. Jiang, E.A. Althoff, F.R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J.L. Gallaher, J.L. Betker, F. Tanaka, C.F. Barbas, D. Hilvert, K.N. Houk, B.L. Stoddard, D. Baker, De novo computational design of retro-aldol enzymes. Science (New York, NY) 319(5868), 1387–1391 (2008) L. Jiang, E.A. Althoff, F.R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J.L. Gallaher, J.L. Betker, F. Tanaka, C.F. Barbas, D. Hilvert, K.N. Houk, B.L. Stoddard, D. Baker, De novo computational design of retro-aldol enzymes. Science (New York, NY) 319(5868), 1387–1391 (2008)
30.
go back to reference L.A. Joachimiak, T. Kortemme, B.L. Stoddard, D. Baker, Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361(1), 195–208 (2006)CrossRef L.A. Joachimiak, T. Kortemme, B.L. Stoddard, D. Baker, Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361(1), 195–208 (2006)CrossRef
31.
go back to reference T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods—Support Vector Learning, ed. by B. Scho¨lkopf, C. Burges, A. Smola (MIT Press, 1999) T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods—Support Vector Learning, ed. by B. Scho¨lkopf, C. Burges, A. Smola (MIT Press, 1999)
32.
go back to reference D.T. Jones, W.R. Taylor, J.M. Thornton, A new approach to protein fold recognition. Nature 358, 86–89 (1992)CrossRef D.T. Jones, W.R. Taylor, J.M. Thornton, A new approach to protein fold recognition. Nature 358, 86–89 (1992)CrossRef
35.
go back to reference J.M. Kleinberg, Efficient algorithms for protein sequence design and the analysis of certain evolutionary fitness landscapes. J. Comput. Biol. (A journal of computational molecular cell biology) 6(3–4), 387–404 (1999)CrossRef J.M. Kleinberg, Efficient algorithms for protein sequence design and the analysis of certain evolutionary fitness landscapes. J. Comput. Biol. (A journal of computational molecular cell biology) 6(3–4), 387–404 (1999)CrossRef
36.
go back to reference P. Koehl, M. Levitt, De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293, 1161–1181 (1999)CrossRef P. Koehl, M. Levitt, De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293, 1161–1181 (1999)CrossRef
37.
go back to reference P. Koehl, M. Levitt, De novo protein design. II. Plasticity of protein sequence. J. Mol. Biol. 293, 1183–1193 (1999)CrossRef P. Koehl, M. Levitt, De novo protein design. II. Plasticity of protein sequence. J. Mol. Biol. 293, 1183–1193 (1999)CrossRef
38.
go back to reference K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059 (1996)CrossRef K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059 (1996)CrossRef
39.
go back to reference K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. 95(6), 2932–2937 (1998)CrossRef K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. 95(6), 2932–2937 (1998)CrossRef
40.
go back to reference B. Kuhlman, D. Baker, Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. U.S.A. 97, 10383–10388 (2000) B. Kuhlman, D. Baker, Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. U.S.A. 97, 10383–10388 (2000)
41.
go back to reference B. Kuhlman, G. Dantas, G.C. Ireton, G. Varani, B.L. Stoddard, D. Baker, Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef B. Kuhlman, G. Dantas, G.C. Ireton, G. Varani, B.L. Stoddard, D. Baker, Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef
42.
go back to reference G.A. Lazar, W. Dang, S. Karki, O. Vafa, J.S. Peng, L. Hyun, C. Chan, H.S. Chung, A. Eivazi, S.C. Yoder, J. Vielmetter, D.F. Carmichael, R.J. Hayes, B.I. Dahiyat, Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. U.S.A. 103(11), 4005–4010 (2006)CrossRef G.A. Lazar, W. Dang, S. Karki, O. Vafa, J.S. Peng, L. Hyun, C. Chan, H.S. Chung, A. Eivazi, S.C. Yoder, J. Vielmetter, D.F. Carmichael, R.J. Hayes, B.I. Dahiyat, Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. U.S.A. 103(11), 4005–4010 (2006)CrossRef
43.
go back to reference Y.J. Lee, O.L. Mangasarian, RSVM: Reduced support vector machines, in Proceedings of the First SIAM International Conference on Data Mining (2001), pp. 1–17 Y.J. Lee, O.L. Mangasarian, RSVM: Reduced support vector machines, in Proceedings of the First SIAM International Conference on Data Mining (2001), pp. 1–17
44.
go back to reference C.M.R. Lemer, M.J. Rooman, S.J. Wodak, Protein-structure prediction by threading methods—evaluation of current techniques. Proteins 23, 337–355 (1995)CrossRef C.M.R. Lemer, M.J. Rooman, S.J. Wodak, Protein-structure prediction by threading methods—evaluation of current techniques. Proteins 23, 337–355 (1995)CrossRef
45.
go back to reference H. Li, R. Helling, C. Tang, N. Wingreen, Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996)CrossRef H. Li, R. Helling, C. Tang, N. Wingreen, Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996)CrossRef
46.
go back to reference X. Li, J. Liang, Cooperativity and anti-cooperativity of three-body interactions in proteins. J. Phys. Chem. B (In review) (2004) X. Li, J. Liang, Cooperativity and anti-cooperativity of three-body interactions in proteins. J. Phys. Chem. B (In review) (2004)
47.
go back to reference X. Li, C. Hu, J. Liang, Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53, 792–805 (2003)CrossRef X. Li, C. Hu, J. Liang, Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53, 792–805 (2003)CrossRef
48.
go back to reference J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, S. Subramaniam, Analytical shape computing of macromolecules I: Molecular area and volume through alpha-shape. Proteins 33, 1–17 (1998)CrossRef J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, S. Subramaniam, Analytical shape computing of macromolecules I: Molecular area and volume through alpha-shape. Proteins 33, 1–17 (1998)CrossRef
49.
go back to reference H. Lu, J. Skolnick, A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44, 223–232 (2001)CrossRef H. Lu, J. Skolnick, A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44, 223–232 (2001)CrossRef
50.
go back to reference V.N. Maiorov, G.M. Crippen, Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–888 (1992)CrossRef V.N. Maiorov, G.M. Crippen, Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–888 (1992)CrossRef
51.
go back to reference O.L. Mangasarian, Nonlinear Programming (Society for Industrial Mathematics, 1994) O.L. Mangasarian, Nonlinear Programming (Society for Industrial Mathematics, 1994)
52.
go back to reference J. Meller, M. Wagner, R. Elber, Maximum feasibility guideline in the design and analysis of protein folding potentials. J. Comput. Chem. 23, 111–118 (2002)CrossRef J. Meller, M. Wagner, R. Elber, Maximum feasibility guideline in the design and analysis of protein folding potentials. J. Comput. Chem. 23, 111–118 (2002)CrossRef
53.
go back to reference C.S. Mészáros, Fast Cholesky factorization for interior point methods of linear programming. Comput. Math. Appl. 31, 49–51 (1996)MathSciNetCrossRefMATH C.S. Mészáros, Fast Cholesky factorization for interior point methods of linear programming. Comput. Math. Appl. 31, 49–51 (1996)MathSciNetCrossRefMATH
54.
go back to reference C. Micheletti, F. Seno, J.R. Banavar, A. Maritan, Learning effective amino acid interactions through iterative stochastic techniques. Proteins 42(3), 422–431 (2001)CrossRefMATH C. Micheletti, F. Seno, J.R. Banavar, A. Maritan, Learning effective amino acid interactions through iterative stochastic techniques. Proteins 42(3), 422–431 (2001)CrossRefMATH
55.
go back to reference L.A. Mirny, E.I. Shakhnovich, How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol. 264, 1164–1179 (1996)CrossRef L.A. Mirny, E.I. Shakhnovich, How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol. 264, 1164–1179 (1996)CrossRef
56.
go back to reference S. Miyazawa, R. Jernigan, Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRef S. Miyazawa, R. Jernigan, Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRef
58.
go back to reference S. Miyazawa, R.L. Jernigan, Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256(3), 623–644 (1996)CrossRef S. Miyazawa, R.L. Jernigan, Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256(3), 623–644 (1996)CrossRef
59.
go back to reference P.J. Munson, R.K. Singh, Statistical significance of hierarchical multi-body potential based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci. 6, 1467–1481 (1997)CrossRef P.J. Munson, R.K. Singh, Statistical significance of hierarchical multi-body potential based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci. 6, 1467–1481 (1997)CrossRef
60.
go back to reference J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1999) J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1999)
61.
62.
go back to reference A. Rossi, C. Micheletti, F. Seno, A. Maritan, A self-consistent knowledge-based approach to protein design. Biophys. J. 80(1), 480–490 (2001)CrossRefMATH A. Rossi, C. Micheletti, F. Seno, A. Maritan, A self-consistent knowledge-based approach to protein design. Biophys. J. 80(1), 480–490 (2001)CrossRefMATH
63.
go back to reference B. Rost, Twilight zone of protein sequence alignments. Protein Eng. Des. Sel.: PEDS 12(2), 85–94 (1999)CrossRef B. Rost, Twilight zone of protein sequence alignments. Protein Eng. Des. Sel.: PEDS 12(2), 85–94 (1999)CrossRef
64.
go back to reference D. Röthlisberger, O. Khersonsky, A.M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J.L. Gallaher, E.A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K.N. Houk, D.S. Tawfik, D. Baker, Kemp elimination catalysts by computational enzyme design. Nature 453(7192), 190–195 (2008) D. Röthlisberger, O. Khersonsky, A.M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J.L. Gallaher, E.A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K.N. Houk, D.S. Tawfik, D. Baker, Kemp elimination catalysts by computational enzyme design. Nature 453(7192), 190–195 (2008)
65.
go back to reference R. Samudrala, J. Moult, An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)CrossRef R. Samudrala, J. Moult, An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)CrossRef
66.
go back to reference B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, 2002) B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, 2002)
67.
go back to reference B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, 2002) B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, 2002)
68.
go back to reference E.I. Shakhnovich, Protein design: a perspective from simple tractable models. Fold Des. 3, R45–R58 (1998)CrossRef E.I. Shakhnovich, Protein design: a perspective from simple tractable models. Fold Des. 3, R45–R58 (1998)CrossRef
69.
go back to reference E.I. Shakhnovich, A.M. Gutin, Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195–7199 (1993)CrossRef E.I. Shakhnovich, A.M. Gutin, Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195–7199 (1993)CrossRef
70.
go back to reference J.M. Shifman, M.H. Choi, S. Mihalas, S.L. Mayo, M.B. Kennedy, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. U.S.A. 103(38), 13968–13973 (2006) J.M. Shifman, M.H. Choi, S. Mihalas, S.L. Mayo, M.B. Kennedy, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. U.S.A. 103(38), 13968–13973 (2006)
71.
go back to reference J.B. Siegel, A. Zanghellini, H.M. Lovick, G. Kiss, A.R. Lambert, J.L. St Clair, J.L. Gallaher, D. Hilvert, M.H. Gelb, B.L. Stoddard, K.N. Houk, F.E. Michael, D. Baker, Computational design of an enzyme catalyst for a stereoselective bi- molecular Diels-Alder reaction. Science (New York, NY) 329(5989), 309–313 J.B. Siegel, A. Zanghellini, H.M. Lovick, G. Kiss, A.R. Lambert, J.L. St Clair, J.L. Gallaher, D. Hilvert, M.H. Gelb, B.L. Stoddard, K.N. Houk, F.E. Michael, D. Baker, Computational design of an enzyme catalyst for a stereoselective bi- molecular Diels-Alder reaction. Science (New York, NY) 329(5989), 309–313
72.
go back to reference K.T. Simons, I. Ruczinski, C. Kooperberg, B. Fox, C. Bystroff, D. Baker, Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999)CrossRef K.T. Simons, I. Ruczinski, C. Kooperberg, B. Fox, C. Bystroff, D. Baker, Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999)CrossRef
73.
go back to reference M.J. Sippl, Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5(2), 229–235 (1995)CrossRef M.J. Sippl, Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5(2), 229–235 (1995)CrossRef
74.
go back to reference A.M. Slovic, H. Kono, J.D. Lear, J.G. Saven, W.F. DeGrado, From the Cover: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. U.S.A. 101(7), 1828–1833 (2004)CrossRef A.M. Slovic, H. Kono, J.D. Lear, J.G. Saven, W.F. DeGrado, From the Cover: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. U.S.A. 101(7), 1828–1833 (2004)CrossRef
75.
go back to reference S. Tanaka, H.A. Scheraga, Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9, 945–950 (1976)CrossRef S. Tanaka, H.A. Scheraga, Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9, 945–950 (1976)CrossRef
76.
go back to reference P.D. Thomas, K.A. Dill, An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. U.S.A. 93, 11628–11633 (1996) P.D. Thomas, K.A. Dill, An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. U.S.A. 93, 11628–11633 (1996)
77.
go back to reference P.D. Thomas, K.A. Dill, Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469 (1996)CrossRef P.D. Thomas, K.A. Dill, Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469 (1996)CrossRef
78.
go back to reference D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40, 71–85 (2000)CrossRef D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40, 71–85 (2000)CrossRef
79.
go back to reference D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40(1), 71–85 (2000)CrossRef D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40(1), 71–85 (2000)CrossRef
80.
81.
go back to reference V. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics), 2nd edn. (Springer, 1999) V. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics), 2nd edn. (Springer, 1999)
82.
go back to reference V. Vapnik, A. Chervonenkis, A note on one class of perceptrons. Autom. Remote Control 25 (1964) V. Vapnik, A. Chervonenkis, A note on one class of perceptrons. Autom. Remote Control 25 (1964)
83.
go back to reference V.N. Vapnik, A.J. Chervonenkis, Theory of Pattern Recognition [in Russian] (Nauka, Moscow, 1974) [German Translation: W. Wapnik, A. Tscherwonenkis, Theorie der Zeichenerkennung (Akademie–Verlag, Berlin, 1979)] V.N. Vapnik, A.J. Chervonenkis, Theory of Pattern Recognition [in Russian] (Nauka, Moscow, 1974) [German Translation: W. Wapnik, A. Tscherwonenkis, Theorie der Zeichenerkennung (Akademie–Verlag, Berlin, 1979)]
84.
go back to reference M. Vendruscolo, E. Domanyi, Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys. 109(11), 101–108 (1998) M. Vendruscolo, E. Domanyi, Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys. 109(11), 101–108 (1998)
85.
go back to reference M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38, 134–148 (2000)CrossRef M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38, 134–148 (2000)CrossRef
86.
go back to reference M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins: Struct. Funct. Genet. 38, 134–148 (2000)CrossRef M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins: Struct. Funct. Genet. 38, 134–148 (2000)CrossRef
87.
go back to reference G. Wang, R.L. Dunbrack, PISCES: a protein sequence culling server. Bioinformatics (Oxford, England) 19(12), 1589–1591 (2003) G. Wang, R.L. Dunbrack, PISCES: a protein sequence culling server. Bioinformatics (Oxford, England) 19(12), 1589–1591 (2003)
88.
go back to reference L. Wernisch, S. Hery, S.J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization. J. Mol. Biol. 301, 713–736 (2000)CrossRef L. Wernisch, S. Hery, S.J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization. J. Mol. Biol. 301, 713–736 (2000)CrossRef
89.
go back to reference S.J. Wodak, M.J. Rooman, Generating and testing protein folds. Curr. Opin. Struct. Biol. 3, 247–259 (1993)CrossRef S.J. Wodak, M.J. Rooman, Generating and testing protein folds. Curr. Opin. Struct. Biol. 3, 247–259 (1993)CrossRef
90.
go back to reference Y. Yang, Y. Zhou, Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 17(7), 1212–1219 (2008)CrossRef Y. Yang, Y. Zhou, Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 17(7), 1212–1219 (2008)CrossRef
91.
go back to reference Y. Yang, Y. Zhou, Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72(2), 793–803 (2008)CrossRef Y. Yang, Y. Zhou, Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72(2), 793–803 (2008)CrossRef
92.
go back to reference K. Yue, K.A. Dill, Inverse protein folding problem: designing polymer sequences. Proc. Natl. Acad. Sci. U.S.A. 89, 4163–4167 (1992)CrossRef K. Yue, K.A. Dill, Inverse protein folding problem: designing polymer sequences. Proc. Natl. Acad. Sci. U.S.A. 89, 4163–4167 (1992)CrossRef
93.
go back to reference W. Zheng, S.J. Cho, I.I. Vaisman, A. Tropsha, A new approach to protein fold recognition based on Delaunay tessellation of protein structure, in Pacific Symposium on Biocomputing’97, ed. by R. Altman, A. Dunker, L. Hunter, T. Klein (World Scientific, Singapore, 1997), pp. 486–497 W. Zheng, S.J. Cho, I.I. Vaisman, A. Tropsha, A new approach to protein fold recognition based on Delaunay tessellation of protein structure, in Pacific Symposium on Biocomputing’97, ed. by R. Altman, A. Dunker, L. Hunter, T. Klein (World Scientific, Singapore, 1997), pp. 486–497
Metadata
Title
Global Nonlinear Fitness Function for Protein Structures
Authors
Yun Xu
Changyu Hu
Yang Dai
Jie Liang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44981-4_1

Premium Partner