Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Global Nonlinear Fitness Function for Protein Structures

verfasst von : Yun Xu, Changyu Hu, Yang Dai, Jie Liang

Erschienen in: Health Informatics Data Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We examine the problem of constructing fitness landscape of proteins for generating amino acid sequences that would fold into an a priori determined structural fold. Such a landscape would be useful for engineering proteins with novel or enhanced biochemistry. It should be able to characterize the global fitness landscape of many proteins simultaneously, and can guide the search process to identify the correct protein sequences. We introduce two geometric views and propose a formulation using mixture of nonlinear Gaussian kernel functions. We aim to solve a simplified protein sequence design problem. Our goal is to distinguish each native sequence for a major portion of representative protein structures from a large number of alternative decoy sequences, each a fragment from proteins of different folds. The nonlinear fitness function developed discriminates perfectly a set of 440 native proteins from 14 million sequence decoys, while no linear fitness function can succeed in this task. In a blind test of unrelated proteins, the nonlinear fitness function misclassifies only 13 native proteins out of 194. This compares favorably with about 3–4 times more misclassifications when optimal linear functions are used. To significantly reduce the complexity of the nonlinear fitness function, we further constructed a simplified nonlinear fitness function using a rectangular kernel with a basis set of proteins and decoys chosen a priori. The full landscape for a large number of protein folds can be captured using only 480 native proteins and 3200 nonprotein decoys via a finite Newton method, compared to about 7000 proteins and decoys in the original nonlinear fitness function. A blind test of a simplified version of sequence design was carried out to discriminate simultaneously 428 native sequences with no significant sequence identity to any training proteins from 11 million challenging protein-like decoys. This simplified fitness function correctly classified 408 native sequences, with only 20 misclassifications (95% correct rate), which outperforms several other statistical linear fitness functions and optimized linear functions. Our results further suggested that for the task of global sequence design, the search space of protein shape and sequence can be effectively parameterized with a relatively small number of carefully chosen basis set of proteins and decoys. For example, the task of designing 428 selected nonhomologous proteins can be achieved using a basis set of about 3680 proteins and decoys. In addition, we showed that the overall landscape is not overly sensitive to the specific choice of the proteins and decoys. The construction of fitness landscape has broad implication in understanding molecular evolution, cellular epigenetic state, and protein structures. Our results can be generalized to construct other types of fitness landscape.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.A. Lazar, J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobi core of ubiquitin. Protein Sci. 6, 1167–1178 (1997)CrossRef G.A. Lazar, J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobi core of ubiquitin. Protein Sci. 6, 1167–1178 (1997)CrossRef
2.
Zurück zum Zitat E. Anderson, Z. Bai, C Bischof, LAPACK Users’ Guide. (Society for Industrial Mathematics, 1999) E. Anderson, Z. Bai, C Bischof, LAPACK Users’ Guide. (Society for Industrial Mathematics, 1999)
4.
Zurück zum Zitat U. Bastolla, J. Farwer, E.W. Knapp, M. Vendruscolo, How to guarantee optimal stability for most representative structures in the protein data bank. Proteins 44(2), 79–96 (2001)CrossRef U. Bastolla, J. Farwer, E.W. Knapp, M. Vendruscolo, How to guarantee optimal stability for most representative structures in the protein data bank. Proteins 44(2), 79–96 (2001)CrossRef
5.
Zurück zum Zitat A. Ben-Naim, Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706 (1997)CrossRef A. Ben-Naim, Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706 (1997)CrossRef
6.
Zurück zum Zitat M.R. Betancourt, D. Thirumalai, Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8, 361–369 (1999)CrossRef M.R. Betancourt, D. Thirumalai, Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci. 8, 361–369 (1999)CrossRef
7.
Zurück zum Zitat D.N. Bolon, S.L. Mayo, Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. U.S.A. 98(25), 14274–14279 (2001) D.N. Bolon, S.L. Mayo, Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. U.S.A. 98(25), 14274–14279 (2001)
9.
Zurück zum Zitat T.L. Chiu, R.A. Goldstein, Optimizing energy potentials for success in protein tertiary structure prediction. Fold Des. 3, 223–228 (1998)CrossRef T.L. Chiu, R.A. Goldstein, Optimizing energy potentials for success in protein tertiary structure prediction. Fold Des. 3, 223–228 (1998)CrossRef
10.
Zurück zum Zitat B.I. Dahiyat, S.L. Mayo, De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef B.I. Dahiyat, S.L. Mayo, De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997)CrossRef
11.
Zurück zum Zitat W.F. DeGrado, C.M. Summa, V. Pavone, F. Nastri, A. Lombardi, De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999)CrossRef W.F. DeGrado, C.M. Summa, V. Pavone, F. Nastri, A. Lombardi, De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999)CrossRef
12.
Zurück zum Zitat J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobic cores of proteins. Protein Sci. 19, 244–255 (1995) J.R. Desjarlais, T.M. Handel, De novo design of the hydrophobic cores of proteins. Protein Sci. 19, 244–255 (1995)
13.
Zurück zum Zitat J.M. Deutsch, T. Kurosky, New algorithm for protein design. Phys. Rev. Lett. 76(2), 323–326 (1996)CrossRef J.M. Deutsch, T. Kurosky, New algorithm for protein design. Phys. Rev. Lett. 76(2), 323–326 (1996)CrossRef
14.
Zurück zum Zitat R.I. Dima, J.R. Banavar, A. Maritan, Scoring functions in protein folding and design. Protein Sci. 9, 812–819 (2000)CrossRef R.I. Dima, J.R. Banavar, A. Maritan, Scoring functions in protein folding and design. Protein Sci. 9, 812–819 (2000)CrossRef
15.
Zurück zum Zitat K.E. Drexler, Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78, 5275–5278 (1981)CrossRef K.E. Drexler, Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78, 5275–5278 (1981)CrossRef
16.
18.
Zurück zum Zitat E.G. Emberly, N.S. Wingreen, C.Tang, Designability of alpha-helical proteins. Proc. Natl. Acad. Sci. U.S.A. 99(17), 11163–11168 (2002) E.G. Emberly, N.S. Wingreen, C.Tang, Designability of alpha-helical proteins. Proc. Natl. Acad. Sci. U.S.A. 99(17), 11163–11168 (2002)
19.
Zurück zum Zitat M.S. Friedrichs, P.G. Wolynes, Toward protein tertiary structure recognition by means of associative memory hamiltonians. Science 246, 371–373 (1989)CrossRef M.S. Friedrichs, P.G. Wolynes, Toward protein tertiary structure recognition by means of associative memory hamiltonians. Science 246, 371–373 (1989)CrossRef
20.
Zurück zum Zitat G. Fung, O.L. Mangasarian, Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55, 39–55 (2003)CrossRef G. Fung, O.L. Mangasarian, Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55, 39–55 (2003)CrossRef
21.
Zurück zum Zitat G. Vriend, C. Sander, Quality control of protein models—directional atomic contact analysis. J. Appl. Cryst. 26, 47–60 (1993)CrossRef G. Vriend, C. Sander, Quality control of protein models—directional atomic contact analysis. J. Appl. Cryst. 26, 47–60 (1993)CrossRef
22.
Zurück zum Zitat R. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. U.S.A. 89, 9029–9033 (1992)CrossRef R. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. U.S.A. 89, 9029–9033 (1992)CrossRef
23.
Zurück zum Zitat M.H. Hao, H. Scheraga, Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9, 184–188 (1999)CrossRef M.H. Hao, H. Scheraga, Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9, 184–188 (1999)CrossRef
24.
Zurück zum Zitat M.H. Hao, H.A. Scheraga, How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. 93(10), 4984–4989 (1996)CrossRef M.H. Hao, H.A. Scheraga, How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. 93(10), 4984–4989 (1996)CrossRef
25.
Zurück zum Zitat R.B. Hill, D.P. Raleigh, A. Lombardi, W.F. DeGrado, De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33(11), 745–754 (2000)CrossRef R.B. Hill, D.P. Raleigh, A. Lombardi, W.F. DeGrado, De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33(11), 745–754 (2000)CrossRef
26.
Zurück zum Zitat L. Holm, C. Ouzounis, C. Sander, G. Tuparev, G. Vriend, A database of protein structure families with common folding motifs. Protein Sci. (A publication of the Protein Society) 1(12), 1691–1698 (1992)CrossRef L. Holm, C. Ouzounis, C. Sander, G. Tuparev, G. Vriend, A database of protein structure families with common folding motifs. Protein Sci. (A publication of the Protein Society) 1(12), 1691–1698 (1992)CrossRef
27.
Zurück zum Zitat C. Hu, X. Li, J. Liang, Developing optimal non-linear scoring function for protein design. Bioinformatics (Oxford, England) 20(17), 3080–3098 (2004) C. Hu, X. Li, J. Liang, Developing optimal non-linear scoring function for protein design. Bioinformatics (Oxford, England) 20(17), 3080–3098 (2004)
28.
Zurück zum Zitat R.L. Jernigan, I. Bahar, Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6, 195–209 (1996)CrossRef R.L. Jernigan, I. Bahar, Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6, 195–209 (1996)CrossRef
29.
Zurück zum Zitat L. Jiang, E.A. Althoff, F.R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J.L. Gallaher, J.L. Betker, F. Tanaka, C.F. Barbas, D. Hilvert, K.N. Houk, B.L. Stoddard, D. Baker, De novo computational design of retro-aldol enzymes. Science (New York, NY) 319(5868), 1387–1391 (2008) L. Jiang, E.A. Althoff, F.R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J.L. Gallaher, J.L. Betker, F. Tanaka, C.F. Barbas, D. Hilvert, K.N. Houk, B.L. Stoddard, D. Baker, De novo computational design of retro-aldol enzymes. Science (New York, NY) 319(5868), 1387–1391 (2008)
30.
Zurück zum Zitat L.A. Joachimiak, T. Kortemme, B.L. Stoddard, D. Baker, Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361(1), 195–208 (2006)CrossRef L.A. Joachimiak, T. Kortemme, B.L. Stoddard, D. Baker, Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361(1), 195–208 (2006)CrossRef
31.
Zurück zum Zitat T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods—Support Vector Learning, ed. by B. Scho¨lkopf, C. Burges, A. Smola (MIT Press, 1999) T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods—Support Vector Learning, ed. by B. Scho¨lkopf, C. Burges, A. Smola (MIT Press, 1999)
32.
Zurück zum Zitat D.T. Jones, W.R. Taylor, J.M. Thornton, A new approach to protein fold recognition. Nature 358, 86–89 (1992)CrossRef D.T. Jones, W.R. Taylor, J.M. Thornton, A new approach to protein fold recognition. Nature 358, 86–89 (1992)CrossRef
35.
Zurück zum Zitat J.M. Kleinberg, Efficient algorithms for protein sequence design and the analysis of certain evolutionary fitness landscapes. J. Comput. Biol. (A journal of computational molecular cell biology) 6(3–4), 387–404 (1999)CrossRef J.M. Kleinberg, Efficient algorithms for protein sequence design and the analysis of certain evolutionary fitness landscapes. J. Comput. Biol. (A journal of computational molecular cell biology) 6(3–4), 387–404 (1999)CrossRef
36.
Zurück zum Zitat P. Koehl, M. Levitt, De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293, 1161–1181 (1999)CrossRef P. Koehl, M. Levitt, De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293, 1161–1181 (1999)CrossRef
37.
Zurück zum Zitat P. Koehl, M. Levitt, De novo protein design. II. Plasticity of protein sequence. J. Mol. Biol. 293, 1183–1193 (1999)CrossRef P. Koehl, M. Levitt, De novo protein design. II. Plasticity of protein sequence. J. Mol. Biol. 293, 1183–1193 (1999)CrossRef
38.
Zurück zum Zitat K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059 (1996)CrossRef K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059 (1996)CrossRef
39.
Zurück zum Zitat K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. 95(6), 2932–2937 (1998)CrossRef K.K. Koretke, Z. Luthey-Schulten, P.G. Wolynes, Self-consistently optimized energy functions for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. 95(6), 2932–2937 (1998)CrossRef
40.
Zurück zum Zitat B. Kuhlman, D. Baker, Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. U.S.A. 97, 10383–10388 (2000) B. Kuhlman, D. Baker, Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. U.S.A. 97, 10383–10388 (2000)
41.
Zurück zum Zitat B. Kuhlman, G. Dantas, G.C. Ireton, G. Varani, B.L. Stoddard, D. Baker, Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef B. Kuhlman, G. Dantas, G.C. Ireton, G. Varani, B.L. Stoddard, D. Baker, Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003)CrossRef
42.
Zurück zum Zitat G.A. Lazar, W. Dang, S. Karki, O. Vafa, J.S. Peng, L. Hyun, C. Chan, H.S. Chung, A. Eivazi, S.C. Yoder, J. Vielmetter, D.F. Carmichael, R.J. Hayes, B.I. Dahiyat, Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. U.S.A. 103(11), 4005–4010 (2006)CrossRef G.A. Lazar, W. Dang, S. Karki, O. Vafa, J.S. Peng, L. Hyun, C. Chan, H.S. Chung, A. Eivazi, S.C. Yoder, J. Vielmetter, D.F. Carmichael, R.J. Hayes, B.I. Dahiyat, Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. U.S.A. 103(11), 4005–4010 (2006)CrossRef
43.
Zurück zum Zitat Y.J. Lee, O.L. Mangasarian, RSVM: Reduced support vector machines, in Proceedings of the First SIAM International Conference on Data Mining (2001), pp. 1–17 Y.J. Lee, O.L. Mangasarian, RSVM: Reduced support vector machines, in Proceedings of the First SIAM International Conference on Data Mining (2001), pp. 1–17
44.
Zurück zum Zitat C.M.R. Lemer, M.J. Rooman, S.J. Wodak, Protein-structure prediction by threading methods—evaluation of current techniques. Proteins 23, 337–355 (1995)CrossRef C.M.R. Lemer, M.J. Rooman, S.J. Wodak, Protein-structure prediction by threading methods—evaluation of current techniques. Proteins 23, 337–355 (1995)CrossRef
45.
Zurück zum Zitat H. Li, R. Helling, C. Tang, N. Wingreen, Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996)CrossRef H. Li, R. Helling, C. Tang, N. Wingreen, Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996)CrossRef
46.
Zurück zum Zitat X. Li, J. Liang, Cooperativity and anti-cooperativity of three-body interactions in proteins. J. Phys. Chem. B (In review) (2004) X. Li, J. Liang, Cooperativity and anti-cooperativity of three-body interactions in proteins. J. Phys. Chem. B (In review) (2004)
47.
Zurück zum Zitat X. Li, C. Hu, J. Liang, Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53, 792–805 (2003)CrossRef X. Li, C. Hu, J. Liang, Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53, 792–805 (2003)CrossRef
48.
Zurück zum Zitat J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, S. Subramaniam, Analytical shape computing of macromolecules I: Molecular area and volume through alpha-shape. Proteins 33, 1–17 (1998)CrossRef J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, S. Subramaniam, Analytical shape computing of macromolecules I: Molecular area and volume through alpha-shape. Proteins 33, 1–17 (1998)CrossRef
49.
Zurück zum Zitat H. Lu, J. Skolnick, A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44, 223–232 (2001)CrossRef H. Lu, J. Skolnick, A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44, 223–232 (2001)CrossRef
50.
Zurück zum Zitat V.N. Maiorov, G.M. Crippen, Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–888 (1992)CrossRef V.N. Maiorov, G.M. Crippen, Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol. 227, 876–888 (1992)CrossRef
51.
Zurück zum Zitat O.L. Mangasarian, Nonlinear Programming (Society for Industrial Mathematics, 1994) O.L. Mangasarian, Nonlinear Programming (Society for Industrial Mathematics, 1994)
52.
Zurück zum Zitat J. Meller, M. Wagner, R. Elber, Maximum feasibility guideline in the design and analysis of protein folding potentials. J. Comput. Chem. 23, 111–118 (2002)CrossRef J. Meller, M. Wagner, R. Elber, Maximum feasibility guideline in the design and analysis of protein folding potentials. J. Comput. Chem. 23, 111–118 (2002)CrossRef
53.
Zurück zum Zitat C.S. Mészáros, Fast Cholesky factorization for interior point methods of linear programming. Comput. Math. Appl. 31, 49–51 (1996)MathSciNetCrossRefMATH C.S. Mészáros, Fast Cholesky factorization for interior point methods of linear programming. Comput. Math. Appl. 31, 49–51 (1996)MathSciNetCrossRefMATH
54.
Zurück zum Zitat C. Micheletti, F. Seno, J.R. Banavar, A. Maritan, Learning effective amino acid interactions through iterative stochastic techniques. Proteins 42(3), 422–431 (2001)CrossRefMATH C. Micheletti, F. Seno, J.R. Banavar, A. Maritan, Learning effective amino acid interactions through iterative stochastic techniques. Proteins 42(3), 422–431 (2001)CrossRefMATH
55.
Zurück zum Zitat L.A. Mirny, E.I. Shakhnovich, How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol. 264, 1164–1179 (1996)CrossRef L.A. Mirny, E.I. Shakhnovich, How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol. 264, 1164–1179 (1996)CrossRef
56.
Zurück zum Zitat S. Miyazawa, R. Jernigan, Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRef S. Miyazawa, R. Jernigan, Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRef
58.
Zurück zum Zitat S. Miyazawa, R.L. Jernigan, Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256(3), 623–644 (1996)CrossRef S. Miyazawa, R.L. Jernigan, Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256(3), 623–644 (1996)CrossRef
59.
Zurück zum Zitat P.J. Munson, R.K. Singh, Statistical significance of hierarchical multi-body potential based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci. 6, 1467–1481 (1997)CrossRef P.J. Munson, R.K. Singh, Statistical significance of hierarchical multi-body potential based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci. 6, 1467–1481 (1997)CrossRef
60.
Zurück zum Zitat J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1999) J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1999)
61.
62.
Zurück zum Zitat A. Rossi, C. Micheletti, F. Seno, A. Maritan, A self-consistent knowledge-based approach to protein design. Biophys. J. 80(1), 480–490 (2001)CrossRefMATH A. Rossi, C. Micheletti, F. Seno, A. Maritan, A self-consistent knowledge-based approach to protein design. Biophys. J. 80(1), 480–490 (2001)CrossRefMATH
63.
Zurück zum Zitat B. Rost, Twilight zone of protein sequence alignments. Protein Eng. Des. Sel.: PEDS 12(2), 85–94 (1999)CrossRef B. Rost, Twilight zone of protein sequence alignments. Protein Eng. Des. Sel.: PEDS 12(2), 85–94 (1999)CrossRef
64.
Zurück zum Zitat D. Röthlisberger, O. Khersonsky, A.M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J.L. Gallaher, E.A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K.N. Houk, D.S. Tawfik, D. Baker, Kemp elimination catalysts by computational enzyme design. Nature 453(7192), 190–195 (2008) D. Röthlisberger, O. Khersonsky, A.M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J.L. Gallaher, E.A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K.N. Houk, D.S. Tawfik, D. Baker, Kemp elimination catalysts by computational enzyme design. Nature 453(7192), 190–195 (2008)
65.
Zurück zum Zitat R. Samudrala, J. Moult, An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)CrossRef R. Samudrala, J. Moult, An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)CrossRef
66.
Zurück zum Zitat B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, 2002) B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, 2002)
67.
Zurück zum Zitat B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, 2002) B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, 2002)
68.
Zurück zum Zitat E.I. Shakhnovich, Protein design: a perspective from simple tractable models. Fold Des. 3, R45–R58 (1998)CrossRef E.I. Shakhnovich, Protein design: a perspective from simple tractable models. Fold Des. 3, R45–R58 (1998)CrossRef
69.
Zurück zum Zitat E.I. Shakhnovich, A.M. Gutin, Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195–7199 (1993)CrossRef E.I. Shakhnovich, A.M. Gutin, Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195–7199 (1993)CrossRef
70.
Zurück zum Zitat J.M. Shifman, M.H. Choi, S. Mihalas, S.L. Mayo, M.B. Kennedy, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. U.S.A. 103(38), 13968–13973 (2006) J.M. Shifman, M.H. Choi, S. Mihalas, S.L. Mayo, M.B. Kennedy, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. U.S.A. 103(38), 13968–13973 (2006)
71.
Zurück zum Zitat J.B. Siegel, A. Zanghellini, H.M. Lovick, G. Kiss, A.R. Lambert, J.L. St Clair, J.L. Gallaher, D. Hilvert, M.H. Gelb, B.L. Stoddard, K.N. Houk, F.E. Michael, D. Baker, Computational design of an enzyme catalyst for a stereoselective bi- molecular Diels-Alder reaction. Science (New York, NY) 329(5989), 309–313 J.B. Siegel, A. Zanghellini, H.M. Lovick, G. Kiss, A.R. Lambert, J.L. St Clair, J.L. Gallaher, D. Hilvert, M.H. Gelb, B.L. Stoddard, K.N. Houk, F.E. Michael, D. Baker, Computational design of an enzyme catalyst for a stereoselective bi- molecular Diels-Alder reaction. Science (New York, NY) 329(5989), 309–313
72.
Zurück zum Zitat K.T. Simons, I. Ruczinski, C. Kooperberg, B. Fox, C. Bystroff, D. Baker, Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999)CrossRef K.T. Simons, I. Ruczinski, C. Kooperberg, B. Fox, C. Bystroff, D. Baker, Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999)CrossRef
73.
Zurück zum Zitat M.J. Sippl, Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5(2), 229–235 (1995)CrossRef M.J. Sippl, Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5(2), 229–235 (1995)CrossRef
74.
Zurück zum Zitat A.M. Slovic, H. Kono, J.D. Lear, J.G. Saven, W.F. DeGrado, From the Cover: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. U.S.A. 101(7), 1828–1833 (2004)CrossRef A.M. Slovic, H. Kono, J.D. Lear, J.G. Saven, W.F. DeGrado, From the Cover: Computational design of water-soluble analogues of the potassium channel KcsA. Proc. Natl. Acad. Sci. U.S.A. 101(7), 1828–1833 (2004)CrossRef
75.
Zurück zum Zitat S. Tanaka, H.A. Scheraga, Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9, 945–950 (1976)CrossRef S. Tanaka, H.A. Scheraga, Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9, 945–950 (1976)CrossRef
76.
Zurück zum Zitat P.D. Thomas, K.A. Dill, An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. U.S.A. 93, 11628–11633 (1996) P.D. Thomas, K.A. Dill, An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. U.S.A. 93, 11628–11633 (1996)
77.
Zurück zum Zitat P.D. Thomas, K.A. Dill, Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469 (1996)CrossRef P.D. Thomas, K.A. Dill, Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469 (1996)CrossRef
78.
Zurück zum Zitat D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40, 71–85 (2000)CrossRef D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40, 71–85 (2000)CrossRef
79.
Zurück zum Zitat D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40(1), 71–85 (2000)CrossRef D. Tobi, G. Shafran, N. Linial, R. Elber, On the design and analysis of protein folding potentials. Proteins 40(1), 71–85 (2000)CrossRef
80.
81.
Zurück zum Zitat V. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics), 2nd edn. (Springer, 1999) V. Vapnik, The Nature of Statistical Learning Theory (Information Science and Statistics), 2nd edn. (Springer, 1999)
82.
Zurück zum Zitat V. Vapnik, A. Chervonenkis, A note on one class of perceptrons. Autom. Remote Control 25 (1964) V. Vapnik, A. Chervonenkis, A note on one class of perceptrons. Autom. Remote Control 25 (1964)
83.
Zurück zum Zitat V.N. Vapnik, A.J. Chervonenkis, Theory of Pattern Recognition [in Russian] (Nauka, Moscow, 1974) [German Translation: W. Wapnik, A. Tscherwonenkis, Theorie der Zeichenerkennung (Akademie–Verlag, Berlin, 1979)] V.N. Vapnik, A.J. Chervonenkis, Theory of Pattern Recognition [in Russian] (Nauka, Moscow, 1974) [German Translation: W. Wapnik, A. Tscherwonenkis, Theorie der Zeichenerkennung (Akademie–Verlag, Berlin, 1979)]
84.
Zurück zum Zitat M. Vendruscolo, E. Domanyi, Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys. 109(11), 101–108 (1998) M. Vendruscolo, E. Domanyi, Pairwise contact potentials are unsuitable for protein folding. J. Chem. Phys. 109(11), 101–108 (1998)
85.
Zurück zum Zitat M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38, 134–148 (2000)CrossRef M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38, 134–148 (2000)CrossRef
86.
Zurück zum Zitat M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins: Struct. Funct. Genet. 38, 134–148 (2000)CrossRef M. Vendruscolo, R. Najmanovich, E. Domany, Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins: Struct. Funct. Genet. 38, 134–148 (2000)CrossRef
87.
Zurück zum Zitat G. Wang, R.L. Dunbrack, PISCES: a protein sequence culling server. Bioinformatics (Oxford, England) 19(12), 1589–1591 (2003) G. Wang, R.L. Dunbrack, PISCES: a protein sequence culling server. Bioinformatics (Oxford, England) 19(12), 1589–1591 (2003)
88.
Zurück zum Zitat L. Wernisch, S. Hery, S.J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization. J. Mol. Biol. 301, 713–736 (2000)CrossRef L. Wernisch, S. Hery, S.J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization. J. Mol. Biol. 301, 713–736 (2000)CrossRef
89.
Zurück zum Zitat S.J. Wodak, M.J. Rooman, Generating and testing protein folds. Curr. Opin. Struct. Biol. 3, 247–259 (1993)CrossRef S.J. Wodak, M.J. Rooman, Generating and testing protein folds. Curr. Opin. Struct. Biol. 3, 247–259 (1993)CrossRef
90.
Zurück zum Zitat Y. Yang, Y. Zhou, Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 17(7), 1212–1219 (2008)CrossRef Y. Yang, Y. Zhou, Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 17(7), 1212–1219 (2008)CrossRef
91.
Zurück zum Zitat Y. Yang, Y. Zhou, Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72(2), 793–803 (2008)CrossRef Y. Yang, Y. Zhou, Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72(2), 793–803 (2008)CrossRef
92.
Zurück zum Zitat K. Yue, K.A. Dill, Inverse protein folding problem: designing polymer sequences. Proc. Natl. Acad. Sci. U.S.A. 89, 4163–4167 (1992)CrossRef K. Yue, K.A. Dill, Inverse protein folding problem: designing polymer sequences. Proc. Natl. Acad. Sci. U.S.A. 89, 4163–4167 (1992)CrossRef
93.
Zurück zum Zitat W. Zheng, S.J. Cho, I.I. Vaisman, A. Tropsha, A new approach to protein fold recognition based on Delaunay tessellation of protein structure, in Pacific Symposium on Biocomputing’97, ed. by R. Altman, A. Dunker, L. Hunter, T. Klein (World Scientific, Singapore, 1997), pp. 486–497 W. Zheng, S.J. Cho, I.I. Vaisman, A. Tropsha, A new approach to protein fold recognition based on Delaunay tessellation of protein structure, in Pacific Symposium on Biocomputing’97, ed. by R. Altman, A. Dunker, L. Hunter, T. Klein (World Scientific, Singapore, 1997), pp. 486–497
Metadaten
Titel
Global Nonlinear Fitness Function for Protein Structures
verfasst von
Yun Xu
Changyu Hu
Yang Dai
Jie Liang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44981-4_1