Skip to main content
Top
Published in: Mathematics in Computer Science 1/2021

12-03-2020

Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate

Authors: Moulay Rchid Sidi Ammi, Mostafa Tahiri, Delfim F. M. Torres

Published in: Mathematics in Computer Science | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a fractional order SIRS model with non-linear incidence rate. Existence of a unique positive solution to the model is proved. Stability analysis of the disease free equilibrium and positive fixed points are investigated. Finally, a numerical example is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agarwal, R.P., Baleanu, D., Nieto, J.J., Torres, D.F.M., Zhou, Y.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 339, 3–29 (2018)MathSciNetMATHCrossRef Agarwal, R.P., Baleanu, D., Nieto, J.J., Torres, D.F.M., Zhou, Y.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 339, 3–29 (2018)MathSciNetMATHCrossRef
2.
go back to reference Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)MathSciNetMATHCrossRef Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)MathSciNetMATHCrossRef
3.
go back to reference Almeida, R.: What is the best fractional derivative to fit data? Appl. Anal. Discrete Math. 11(2), 358–368 (2017)MathSciNetCrossRef Almeida, R.: What is the best fractional derivative to fit data? Appl. Anal. Discrete Math. 11(2), 358–368 (2017)MathSciNetCrossRef
5.
go back to reference Almeida, R., Brito da Cruz, A.M.C., Martins, N., Monteiro, M.T.T.: An epidemiological MSEIR model described by the Caputo fractional derivative. Int. J. Dyn. Control 7(2), 776–784 (2019)MathSciNetCrossRef Almeida, R., Brito da Cruz, A.M.C., Martins, N., Monteiro, M.T.T.: An epidemiological MSEIR model described by the Caputo fractional derivative. Int. J. Dyn. Control 7(2), 776–784 (2019)MathSciNetCrossRef
6.
go back to reference Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)MATHCrossRef Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)MATHCrossRef
7.
go back to reference Almeida, R., Tavares, D., Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2019)MATHCrossRef Almeida, R., Tavares, D., Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2019)MATHCrossRef
8.
go back to reference Bayour, B., Torres, D.F.M.: Complex-valued fractional derivatives on time scales. In: Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, vol. 164, pp 79–87. Springer, Cham (2016) Bayour, B., Torres, D.F.M.: Complex-valued fractional derivatives on time scales. In: Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, vol. 164, pp 79–87. Springer, Cham (2016)
9.
go back to reference Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)CrossRef Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)CrossRef
10.
go back to reference Carvalho, A.R.M., Pinto, C.M.A.: Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection. Commun. Nonlinear Sci. Numer. Simul. 61, 104–126 (2018)MathSciNetMATHCrossRef Carvalho, A.R.M., Pinto, C.M.A.: Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection. Commun. Nonlinear Sci. Numer. Simul. 61, 104–126 (2018)MathSciNetMATHCrossRef
11.
go back to reference Carvalho, A.R.M., Pinto, C.M.A.: Immune response in HIV epidemics for distinct transmission rates and for saturated CTL response, Math. Model. Nat. Phenom. 14(3), 13, Art. 307 (2019) Carvalho, A.R.M., Pinto, C.M.A.: Immune response in HIV epidemics for distinct transmission rates and for saturated CTL response, Math. Model. Nat. Phenom. 14(3), 13, Art. 307 (2019)
12.
go back to reference Carvalho, A.R.M., Pinto, C.M.A., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Adv. Differ. Equ. 2018(2), 22 (2018)MathSciNetMATH Carvalho, A.R.M., Pinto, C.M.A., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Adv. Differ. Equ. 2018(2), 22 (2018)MathSciNetMATH
13.
go back to reference Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. North Am. Benthol. Soc. 8, 211–221 (1989)CrossRef Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. North Am. Benthol. Soc. 8, 211–221 (1989)CrossRef
14.
go back to reference DeAngelis, D.L., Goldsten, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)CrossRef DeAngelis, D.L., Goldsten, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)CrossRef
15.
go back to reference Debbouche, A., Nieto, J.J., Torres, D.F.M.: Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations. J. Optim. Theory Appl. 174(1), 7–31 (2017)MathSciNetMATHCrossRef Debbouche, A., Nieto, J.J., Torres, D.F.M.: Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations. J. Optim. Theory Appl. 174(1), 7–31 (2017)MathSciNetMATHCrossRef
16.
go back to reference Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)MathSciNetMATHCrossRef Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)MathSciNetMATHCrossRef
17.
go back to reference Doungmo Goufo, E.F., Maritz, R., Munganga, J.: Some properties of the Kermack–McKendrick epidemic model with fractional derivative and nonlinear incidence. Adv. Differ. Equ. 2014(278), 9 (2014)MathSciNetMATH Doungmo Goufo, E.F., Maritz, R., Munganga, J.: Some properties of the Kermack–McKendrick epidemic model with fractional derivative and nonlinear incidence. Adv. Differ. Equ. 2014(278), 9 (2014)MathSciNetMATH
18.
go back to reference El-Saka, H.A.A.: The fractional-order SIR and SIRS epidemic models with variable population size. Math. Sci. Lett. 2, 195–200 (2013)CrossRef El-Saka, H.A.A.: The fractional-order SIR and SIRS epidemic models with variable population size. Math. Sci. Lett. 2, 195–200 (2013)CrossRef
19.
go back to reference El-Shahed, M., Alsaedi, A.: The fractional SIRC model and influenza A. Math. Probl. Eng. 2011, 9, Art. ID 480378 (2011) El-Shahed, M., Alsaedi, A.: The fractional SIRC model and influenza A. Math. Probl. Eng. 2011, 9, Art. ID 480378 (2011)
20.
go back to reference Hattaf, K., Yousfi, N., Tridane, A.: Stability analysis of a virus dynamics model with general incidence rate and two delays. Appl. Math. Comput. 221, 514–521 (2013)MathSciNetMATH Hattaf, K., Yousfi, N., Tridane, A.: Stability analysis of a virus dynamics model with general incidence rate and two delays. Appl. Math. Comput. 221, 514–521 (2013)MathSciNetMATH
21.
go back to reference He, J.-H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114, 115–123 (2000)MathSciNetMATH He, J.-H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114, 115–123 (2000)MathSciNetMATH
22.
go back to reference He, J.-H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)MathSciNetMATHCrossRef He, J.-H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)MathSciNetMATHCrossRef
23.
go back to reference He, J.-H., Hu, Y.: On fractals Space-time and fractional calculus. Thermal Sci. 20(3), 773–777 (2016)CrossRef He, J.-H., Hu, Y.: On fractals Space-time and fractional calculus. Thermal Sci. 20(3), 773–777 (2016)CrossRef
24.
go back to reference He, J.-H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Thermal Sci. 16(2), 331–334 (2012)CrossRef He, J.-H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Thermal Sci. 16(2), 331–334 (2012)CrossRef
25.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Inc, River Edge (2000)MATHCrossRef Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Inc, River Edge (2000)MATHCrossRef
26.
go back to reference Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015)MathSciNetMATHCrossRef Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015)MathSciNetMATHCrossRef
27.
go back to reference Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics, part I. Proc. R. Soc. A 115, 700–721 (1927)MATH Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics, part I. Proc. R. Soc. A 115, 700–721 (1927)MATH
28.
go back to reference Khosravian-Arab, H., Torres, D.F.M.: Uniform approximation of fractional derivatives and integrals with application to fractional differential equations. Nonlinear Stud. 20, 533–548 (2013)MathSciNetMATH Khosravian-Arab, H., Torres, D.F.M.: Uniform approximation of fractional derivatives and integrals with application to fractional differential equations. Nonlinear Stud. 20, 533–548 (2013)MathSciNetMATH
29.
go back to reference Li, Z.-B., He, J.-H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)MathSciNetMATH Li, Z.-B., He, J.-H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15(5), 970–973 (2010)MathSciNetMATH
30.
go back to reference Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332(1), 709–726 (2007)MathSciNetMATHCrossRef Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332(1), 709–726 (2007)MathSciNetMATHCrossRef
31.
go back to reference Liu, H.-Y., He, J.-H., Li, Z.-B.: Fractional calculus for nanoscale flow and heat transfer. Int. J. Numer. Methods Heat Fluid Flow 24(6), 1227–1250 (2014)MathSciNetMATHCrossRef Liu, H.-Y., He, J.-H., Li, Z.-B.: Fractional calculus for nanoscale flow and heat transfer. Int. J. Numer. Methods Heat Fluid Flow 24(6), 1227–1250 (2014)MathSciNetMATHCrossRef
32.
go back to reference Lotfi, E.M., Mahrouf, M., Maziane, M., Silva, C.J., Torres, D.F.M., Yousfi, N.: A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data. Stat. Optim. Inf. Comput. 7(3), 588–603 (2019)MathSciNetCrossRef Lotfi, E.M., Mahrouf, M., Maziane, M., Silva, C.J., Torres, D.F.M., Yousfi, N.: A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data. Stat. Optim. Inf. Comput. 7(3), 588–603 (2019)MathSciNetCrossRef
33.
go back to reference Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2015)MATHCrossRef Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2015)MATHCrossRef
34.
go back to reference Mateus, J.P., Rebelo, P., Rosa, S., Silva, C.M., Torres, D.F.M.: Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete Contin. Dyn. Syst. Ser. S 11(6), 1179–1199 (2018)MathSciNetMATH Mateus, J.P., Rebelo, P., Rosa, S., Silva, C.M., Torres, D.F.M.: Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete Contin. Dyn. Syst. Ser. S 11(6), 1179–1199 (2018)MathSciNetMATH
35.
go back to reference Odibat, Z.M., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27–34 (2006)MathSciNetMATHCrossRef Odibat, Z.M., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27–34 (2006)MathSciNetMATHCrossRef
36.
go back to reference Odibat, Z.M., Momani, S.: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181(1), 767–774 (2006)MathSciNetMATH Odibat, Z.M., Momani, S.: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181(1), 767–774 (2006)MathSciNetMATH
37.
go back to reference Odibat, Z., Momani, S.: An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf. 26, 15–27 (2008)MATH Odibat, Z., Momani, S.: An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf. 26, 15–27 (2008)MATH
38.
go back to reference Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)MathSciNetMATH Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)MathSciNetMATH
39.
go back to reference Okyere, E., Oduro, F.T., Amponsah, S.K., Dontwi, I.K., Frempong, N.K.: Fractional order SIR model with constant population. Br. J. Math. Comput. Sci. 14(2), 1–12 (2016)CrossRef Okyere, E., Oduro, F.T., Amponsah, S.K., Dontwi, I.K., Frempong, N.K.: Fractional order SIR model with constant population. Br. J. Math. Comput. Sci. 14(2), 1–12 (2016)CrossRef
40.
41.
go back to reference Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)MATHCrossRef Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)MATHCrossRef
42.
go back to reference Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press Inc, San Diego (1999) Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press Inc, San Diego (1999)
43.
go back to reference Rachah, A., Torres, D.F.M.: Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 179–197 (2018)MathSciNetMATH Rachah, A., Torres, D.F.M.: Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 179–197 (2018)MathSciNetMATH
44.
go back to reference Razminia, K., Razminia, A., Torres, D.F.M.: Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure. Appl. Math. Comput. 257, 374–380 (2015)MathSciNetMATH Razminia, K., Razminia, A., Torres, D.F.M.: Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure. Appl. Math. Comput. 257, 374–380 (2015)MathSciNetMATH
45.
go back to reference Rosa, S., Torres, D.F.M.: Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Solitons Fractals 117, 142–149 (2018)MathSciNetMATHCrossRef Rosa, S., Torres, D.F.M.: Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Solitons Fractals 117, 142–149 (2018)MathSciNetMATHCrossRef
47.
go back to reference Salati, A.B., Shamsi, M., Torres, D.F.M.: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 67, 334–350 (2019)MathSciNetMATHCrossRef Salati, A.B., Shamsi, M., Torres, D.F.M.: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 67, 334–350 (2019)MathSciNetMATHCrossRef
48.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)MATH
49.
go back to reference Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015) Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)
50.
51.
go back to reference Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 75–85 (2015)MathSciNetMATHCrossRef Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 75–85 (2015)MathSciNetMATHCrossRef
52.
go back to reference Wang, X., He, Y., Wang, M.: Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal. 71(12), 6126–6134 (2009)MathSciNetMATHCrossRef Wang, X., He, Y., Wang, M.: Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal. 71(12), 6126–6134 (2009)MathSciNetMATHCrossRef
53.
go back to reference Wang, K.-L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg–Whitham equation. Thermal Sci. 21(5), 2049–2055 (2017)CrossRef Wang, K.-L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg–Whitham equation. Thermal Sci. 21(5), 2049–2055 (2017)CrossRef
54.
go back to reference West, B.J., Turalska, M., Grigolini, P.: Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics. New J. Phys. 17(4), 045009 (2015)MATHCrossRef West, B.J., Turalska, M., Grigolini, P.: Fractional calculus ties the microscopic and macroscopic scales of complex network dynamics. New J. Phys. 17(4), 045009 (2015)MATHCrossRef
55.
go back to reference Wojtak, W., Silva, C.J., Torres, D.F.M.: Uniform asymptotic stability of a fractional tuberculosis model, Math. Model. Nat. Phenom. 13(1), 10, Art. 9 (2018) Wojtak, W., Silva, C.J., Torres, D.F.M.: Uniform asymptotic stability of a fractional tuberculosis model, Math. Model. Nat. Phenom. 13(1), 10, Art. 9 (2018)
56.
go back to reference Wu, X.-E., Liang, Y.-S.: Relationship between fractal dimensions and fractional calculus. Nonlinear Sci. Lett. A 8(1), 77–89 (2017)MathSciNet Wu, X.-E., Liang, Y.-S.: Relationship between fractal dimensions and fractional calculus. Nonlinear Sci. Lett. A 8(1), 77–89 (2017)MathSciNet
57.
go back to reference Wu, X., Tang, L., Zhong, T.: An iteration algorithm for fractal dimensions of a self-similar set. Nonlinear Sci. Lett. A 8(1), 117–120 (2017) Wu, X., Tang, L., Zhong, T.: An iteration algorithm for fractal dimensions of a self-similar set. Nonlinear Sci. Lett. A 8(1), 117–120 (2017)
58.
go back to reference Yang, X.-J., Machado, J.A.T., Baleanu, D.: Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(4), 1740006 (2017)MathSciNetCrossRef Yang, X.-J., Machado, J.A.T., Baleanu, D.: Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(4), 1740006 (2017)MathSciNetCrossRef
Metadata
Title
Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate
Authors
Moulay Rchid Sidi Ammi
Mostafa Tahiri
Delfim F. M. Torres
Publication date
12-03-2020
Publisher
Springer International Publishing
Published in
Mathematics in Computer Science / Issue 1/2021
Print ISSN: 1661-8270
Electronic ISSN: 1661-8289
DOI
https://doi.org/10.1007/s11786-020-00467-z

Other articles of this Issue 1/2021

Mathematics in Computer Science 1/2021 Go to the issue

Premium Partner