Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2024

01-03-2024

Glucose sensing via green synthesis of NiO–SiO2 composites with citrus lemon peel extract

Authors: Ihsan Ali Mahar, Aneela Tahira, Mehnaz Parveen, Ahmed Ali Hulio, Zahoor Ahmed Ibupoto, Muhammad Ali Bhatti, Elmuez Dawi, Ayman Nafady, Riyadh H. Alshammari, Brigitte Vigolo, Kezhen Qi, Elfatih Mustafa, Lama Saleem, Akram Ashames, Zafar Hussain Ibupoto

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, NiO–SiO2-based composites were synthesized through low-temperature aqueous chemical growth utilizing a facile, low-cost, and environmentally friendly approach. The composite systems were prepared using a combination of silica gel and citrus lemon peel extract. Due to the remarkable green chemicals in orange peel extract, porous nanostructures have been developed with thin sheet-like properties. The composite materials were examined in terms of their crystalline structure, morphology, optical band gap, and surface chemical composition. An advanced non-enzymatic glucose sensor developed from NiO–SiO2 composites exhibits rich surface oxygen vacancies and abundant catalytic sites. Based on sample 2, cyclic voltammetry revealed a linear glucose concentration range between 0.1 and 20 mM, chronoamperometry exhibited glucose concentration ranges between 0.1 and 14 mM, and linear sweep voltammetry revealed glucose concentration ranges from 0.1 to 10 mM. In enzymatic glucose sensors, the minimum level of detection was estimated to be 0.08 mM. A number of sensor characterization parameters were examined, including selectivity, stability, reproducibility, and real-time applications. In addition, electrochemical impedance spectroscopy (EIS) has shown that the NiO–SiO2 composite performs well in non-enzymatic glucose sensing due to its low charge transfer resistance and high electrochemical active surface area (ECSA). NiO–SiO2 composites could have significant biomedical, energy conversion, and storage applications based on the results obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Justice Babu, S. Sheet, Y.S. Lee, G. Gnana Kumar, Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 6, 1909–1918 (2018)CrossRef K. Justice Babu, S. Sheet, Y.S. Lee, G. Gnana Kumar, Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 6, 1909–1918 (2018)CrossRef
2.
go back to reference X. Qian, A. Ko, H. Li, C. Liao, Flexible non-enzymatic glucose strip for direct non-invasive diabetic management. Microchem. J. 197, 109818 (2024)CrossRef X. Qian, A. Ko, H. Li, C. Liao, Flexible non-enzymatic glucose strip for direct non-invasive diabetic management. Microchem. J. 197, 109818 (2024)CrossRef
3.
go back to reference S. Zhang, W. Zhao, C. Liu, J. Zeng, Z. He, C. Wang, W. Yuan, Q. Wang, Flower-like CoO nanowire-decorated Ni foam: a non-invasive electrochemical biosensor for glucose detection in human saliva. Appl. Mater. Today 36, 102083 (2024)CrossRef S. Zhang, W. Zhao, C. Liu, J. Zeng, Z. He, C. Wang, W. Yuan, Q. Wang, Flower-like CoO nanowire-decorated Ni foam: a non-invasive electrochemical biosensor for glucose detection in human saliva. Appl. Mater. Today 36, 102083 (2024)CrossRef
4.
go back to reference W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Photoelectrochemical enzymatic biosensors. Biosen. Bioelectron. 92, 294–304 (2017)CrossRef W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Photoelectrochemical enzymatic biosensors. Biosen. Bioelectron. 92, 294–304 (2017)CrossRef
5.
go back to reference Z. Wang, H. Lei, L. Feng, A facile channel for D-glucose detection in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 293–297 (2013)CrossRef Z. Wang, H. Lei, L. Feng, A facile channel for D-glucose detection in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 293–297 (2013)CrossRef
6.
go back to reference C. Guati, L. Gomez-Coma, M. Fallanza, I. Ortiz, Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022). Rev. Chem. Eng. 40, 123–148 (2024)CrossRef C. Guati, L. Gomez-Coma, M. Fallanza, I. Ortiz, Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022). Rev. Chem. Eng. 40, 123–148 (2024)CrossRef
7.
go back to reference D. Arif, M. Hassan, M. Abdullah, W. Miran, M.A. Nasir, S. Batool, M.A. Baig, and U. Liaqat, An electrochemical sensor based on copper oxide nanoparticles loaded on a mesoporous MCM-41 for non-enzymatic detection of glucose. Ceramics International. (2024). D. Arif, M. Hassan, M. Abdullah, W. Miran, M.A. Nasir, S. Batool, M.A. Baig, and U. Liaqat, An electrochemical sensor based on copper oxide nanoparticles loaded on a mesoporous MCM-41 for non-enzymatic detection of glucose. Ceramics International. (2024).
8.
go back to reference V. Subramanian, A. Humayun, P. Nagomony, C. Viswanathan, Non-enzymatic electrochemical detection of methylglyoxal in saliva using a polyaniline/nickel oxide nanohybrid biosensor: A noninvasive approach for diabetes diagnosis. Biosens. Bioelectron. X, 100444 (2024) V. Subramanian, A. Humayun, P. Nagomony, C. Viswanathan, Non-enzymatic electrochemical detection of methylglyoxal in saliva using a polyaniline/nickel oxide nanohybrid biosensor: A noninvasive approach for diabetes diagnosis. Biosens. Bioelectron. X, 100444 (2024)
9.
go back to reference R. Chen, W. Xu, C. Xiong, X. Zhou, S. Xiong, Z. Nie, High-salt-tolerance matrix for facile detection of glucose in rat brain microdialysates by MALDI mass spectrometry. Anal. chem. 84, 465–469 (2012)PubMedCrossRef R. Chen, W. Xu, C. Xiong, X. Zhou, S. Xiong, Z. Nie, High-salt-tolerance matrix for facile detection of glucose in rat brain microdialysates by MALDI mass spectrometry. Anal. chem. 84, 465–469 (2012)PubMedCrossRef
10.
go back to reference S. Majeed, W. Gao, J. Lai, C. Wang, J. Li, Z. Liu, Boric acid-based dual modulation photoluminescent glucose sensor using thioglycolic acid-capped CdTe quantum dots. J. Anal. Test. 1, 291–297 (2017)CrossRef S. Majeed, W. Gao, J. Lai, C. Wang, J. Li, Z. Liu, Boric acid-based dual modulation photoluminescent glucose sensor using thioglycolic acid-capped CdTe quantum dots. J. Anal. Test. 1, 291–297 (2017)CrossRef
11.
go back to reference K. Uematsu, T. Ueno, K. Ushimaru, C. Maruyama, Y. Hamano, H. Katano, Colorimetric method to detect ε-poly-L-lysine using glucose oxidase. J. Biosci. Bioeng. 122, 513–518 (2016)PubMedCrossRef K. Uematsu, T. Ueno, K. Ushimaru, C. Maruyama, Y. Hamano, H. Katano, Colorimetric method to detect ε-poly-L-lysine using glucose oxidase. J. Biosci. Bioeng. 122, 513–518 (2016)PubMedCrossRef
12.
go back to reference W.-Q. Xie, Y.-X. Gong, K.-X. Yu, Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J. Chromatogr. A 1520, 143–146 (2017)PubMedCrossRef W.-Q. Xie, Y.-X. Gong, K.-X. Yu, Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J. Chromatogr. A 1520, 143–146 (2017)PubMedCrossRef
13.
go back to reference N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39, 1747–1763 (2010)PubMedCrossRef N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39, 1747–1763 (2010)PubMedCrossRef
14.
go back to reference Y. Xu, X. Liu, Y. Ding, L. Luo, Y. Wang, Y. Zhang, Preparation and electrochemical investigation of a nano-structured material Ni2+/MgFe layered double hydroxide as a glucose biosensor. Appl. Clay Sci. 52, 322–327 (2011)CrossRef Y. Xu, X. Liu, Y. Ding, L. Luo, Y. Wang, Y. Zhang, Preparation and electrochemical investigation of a nano-structured material Ni2+/MgFe layered double hydroxide as a glucose biosensor. Appl. Clay Sci. 52, 322–327 (2011)CrossRef
15.
go back to reference C. Mousty, Sensors and biosensors based on clay-modified electrodes—new trends. Appl. Clay Sci. 27, 159–177 (2004)CrossRef C. Mousty, Sensors and biosensors based on clay-modified electrodes—new trends. Appl. Clay Sci. 27, 159–177 (2004)CrossRef
17.
go back to reference T.M. Alfareed, A. Almofleh, S.M. Asiri, J.M. AlGhamdi, S.T. Gunday, E. Cevik, Molybdenum-cobalt micro-nano interface assisted ultrasensitive and selective non-enzymatic glucose biosensor. Microchem. J. 191, 108923 (2023)CrossRef T.M. Alfareed, A. Almofleh, S.M. Asiri, J.M. AlGhamdi, S.T. Gunday, E. Cevik, Molybdenum-cobalt micro-nano interface assisted ultrasensitive and selective non-enzymatic glucose biosensor. Microchem. J. 191, 108923 (2023)CrossRef
18.
go back to reference B.E. Nugba, N.O. Mousa, A. Osman, A.A. El-Moneim, Non-enzymatic amperometric biosensor with anchored Ni nanoparticles for urinary glucose quantification. Diam. Relat. Mater. 137, 110171 (2023)CrossRef B.E. Nugba, N.O. Mousa, A. Osman, A.A. El-Moneim, Non-enzymatic amperometric biosensor with anchored Ni nanoparticles for urinary glucose quantification. Diam. Relat. Mater. 137, 110171 (2023)CrossRef
19.
go back to reference Z. Golsanamlou, M. Mahmoudpour, J. Soleymani, A. Jouyban, Applications of advanced materials for non-enzymatic glucose monitoring: from invasive to the wearable device. Crit. Rev. Anal. Chem. 53, 1116–1131 (2023)PubMedCrossRef Z. Golsanamlou, M. Mahmoudpour, J. Soleymani, A. Jouyban, Applications of advanced materials for non-enzymatic glucose monitoring: from invasive to the wearable device. Crit. Rev. Anal. Chem. 53, 1116–1131 (2023)PubMedCrossRef
20.
go back to reference A.K. Subramania, S. Sugumaran, P. Sethuramalingam, R. Ramesh, P. Dhandapani, S. Angaiah, NiCo2O4/Ti2NbC2 (double MXene) nanohybrid-based non-enzymatic electrochemical biosensor for the detection of glucose in sweat. Bioprocess Biosyst. Eng. 46, 1755–1763 (2023)PubMedCrossRef A.K. Subramania, S. Sugumaran, P. Sethuramalingam, R. Ramesh, P. Dhandapani, S. Angaiah, NiCo2O4/Ti2NbC2 (double MXene) nanohybrid-based non-enzymatic electrochemical biosensor for the detection of glucose in sweat. Bioprocess Biosyst. Eng. 46, 1755–1763 (2023)PubMedCrossRef
21.
go back to reference L.Y. Xiong, Y.J. Kim, W.C. Seo, H.K. Lee, W.C. Yang, W.F. Xie, High-performance non-enzymatic glucose sensor based on Co3O4/rGO nanohybrid. Rare Met. 42, 3046–3053 (2023)CrossRef L.Y. Xiong, Y.J. Kim, W.C. Seo, H.K. Lee, W.C. Yang, W.F. Xie, High-performance non-enzymatic glucose sensor based on Co3O4/rGO nanohybrid. Rare Met. 42, 3046–3053 (2023)CrossRef
22.
go back to reference A. Mubarakali, S. Gopinath, P. Parthasarathy, U.A. Kumar, A.A. Basha, Highly efficient and sensitive non-enzymatic glucose biosensor based on flower-shaped CuO-colloid nanoparticles decorated with graphene-modified nanocomposite electrode. Measurement 217, 113145 (2023)CrossRef A. Mubarakali, S. Gopinath, P. Parthasarathy, U.A. Kumar, A.A. Basha, Highly efficient and sensitive non-enzymatic glucose biosensor based on flower-shaped CuO-colloid nanoparticles decorated with graphene-modified nanocomposite electrode. Measurement 217, 113145 (2023)CrossRef
23.
24.
25.
go back to reference A. Mohammadpour-Haratbar, S. Mohammadpour-Haratbar, Y. Zare, K.Y. Rhee, S.J. Park, A review on non-enzymatic electrochemical biosensors of glucose using carbon nanofiber nanocomposites. Biosensors 12, 1004 (2022)PubMedPubMedCentralCrossRef A. Mohammadpour-Haratbar, S. Mohammadpour-Haratbar, Y. Zare, K.Y. Rhee, S.J. Park, A review on non-enzymatic electrochemical biosensors of glucose using carbon nanofiber nanocomposites. Biosensors 12, 1004 (2022)PubMedPubMedCentralCrossRef
26.
go back to reference J. Ahmed, M.A. Rashed, M. Faisal, F.A. Harraz, M. Jalalah, S.A. Alsareii, Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Appl. Surf. Sci. 552, 149477 (2021)CrossRef J. Ahmed, M.A. Rashed, M. Faisal, F.A. Harraz, M. Jalalah, S.A. Alsareii, Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Appl. Surf. Sci. 552, 149477 (2021)CrossRef
27.
go back to reference P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487–3502 (2013)CrossRef P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487–3502 (2013)CrossRef
28.
go back to reference M. Sivakumar, R. Madhu, S.M. Chen, V. Veeramani, A. Manikandan, W.H. Hung, Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 120, 17024–17028 (2016)CrossRef M. Sivakumar, R. Madhu, S.M. Chen, V. Veeramani, A. Manikandan, W.H. Hung, Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 120, 17024–17028 (2016)CrossRef
29.
go back to reference Q. Balouch, Z.H. Ibupoto, G.Q. Khaskheli, R.A. Soomro, S.M.K. Sirajuddin, V.K. Deewani, Cobalt oxide nanoflowers for electrochemical determination of glucose. J. Elect. Materials. 44, 3724–3732 (2015)CrossRef Q. Balouch, Z.H. Ibupoto, G.Q. Khaskheli, R.A. Soomro, S.M.K. Sirajuddin, V.K. Deewani, Cobalt oxide nanoflowers for electrochemical determination of glucose. J. Elect. Materials. 44, 3724–3732 (2015)CrossRef
30.
go back to reference A.M. Azharudeen, R. Karthiga, M. Rajarajan, A. Suganthi, Fabrication, characterization of polyaniline intercalated NiO nanocomposites and application in the development of non-enzymatic glucose biosensor. Arab. J. Chem. 13, 4053–4064 (2020)CrossRef A.M. Azharudeen, R. Karthiga, M. Rajarajan, A. Suganthi, Fabrication, characterization of polyaniline intercalated NiO nanocomposites and application in the development of non-enzymatic glucose biosensor. Arab. J. Chem. 13, 4053–4064 (2020)CrossRef
31.
go back to reference X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)PubMedCrossRef X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)PubMedCrossRef
32.
go back to reference F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009)PubMedCrossRef F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009)PubMedCrossRef
33.
go back to reference Y. Xiao, L. Hou, M. Wang, R. Liu, L. Han, M. Nikolai, S. Zhang, C. Cheng, K. Hu, Noninvasive glucose monitoring using portable GOx-Based biosensing system. Anal. Chim. Acta 1287, 342068 (2024)PubMedCrossRef Y. Xiao, L. Hou, M. Wang, R. Liu, L. Han, M. Nikolai, S. Zhang, C. Cheng, K. Hu, Noninvasive glucose monitoring using portable GOx-Based biosensing system. Anal. Chim. Acta 1287, 342068 (2024)PubMedCrossRef
34.
go back to reference A.K. Manna, P. Guha, S.K. Srivastava, S. Varma, Non-enzymatic glucose sensors based on electrodeposited CuxO–ZnO composite nanostructures. J. Mater. Sci. Mater. Electron. 35, 1–12 (2024)CrossRef A.K. Manna, P. Guha, S.K. Srivastava, S. Varma, Non-enzymatic glucose sensors based on electrodeposited CuxO–ZnO composite nanostructures. J. Mater. Sci. Mater. Electron. 35, 1–12 (2024)CrossRef
35.
go back to reference Q. Fan, X. Li, H. Dong, Z. Ni, T. Hu, ZIF-67 anchored on MoS2/rGO heterostructure for non-enzymatic and visible-light-sensitive photoelectrochemical biosensing. Biosensors 14, 38 (2024)PubMedPubMedCentralCrossRef Q. Fan, X. Li, H. Dong, Z. Ni, T. Hu, ZIF-67 anchored on MoS2/rGO heterostructure for non-enzymatic and visible-light-sensitive photoelectrochemical biosensing. Biosensors 14, 38 (2024)PubMedPubMedCentralCrossRef
36.
go back to reference M. Zhou, Glucose electrochemical biosensors: research progress and challenges. In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), 12924, 354–359, SPIE. (2024). M. Zhou, Glucose electrochemical biosensors: research progress and challenges. In Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), 12924, 354–359, SPIE. (2024).
37.
go back to reference M. Govindaraj, A. Srivastava, M.K. Muthukumaran, P.C. Tsai, Y.C. Lin, B.K. Raja, J. Rajendran, V.K. Ponnusamy, J.A. Selvi, Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 253, 126680 (2023)PubMedCrossRef M. Govindaraj, A. Srivastava, M.K. Muthukumaran, P.C. Tsai, Y.C. Lin, B.K. Raja, J. Rajendran, V.K. Ponnusamy, J.A. Selvi, Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 253, 126680 (2023)PubMedCrossRef
38.
go back to reference H. Çiftçi, E. Alver, F. Çelik, A.Ü. Metin, U. Tamer, Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid. Microch. Acta. 183, 1479–1486 (2016)CrossRef H. Çiftçi, E. Alver, F. Çelik, A.Ü. Metin, U. Tamer, Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid. Microch. Acta. 183, 1479–1486 (2016)CrossRef
39.
go back to reference C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, Recent advances in electrochemical glucose biosensors a revi. Rsc. Adv. 3, 4473–4491 (2013)CrossRef C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, Recent advances in electrochemical glucose biosensors a revi. Rsc. Adv. 3, 4473–4491 (2013)CrossRef
41.
go back to reference H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)PubMedCrossRef H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)PubMedCrossRef
42.
go back to reference I.H. Yeo, D.C. Johnson, Anodic response of glucose at copper-based alloy electrodes. J. Elec. Anal. Chem. 484, 157–163 (2000) I.H. Yeo, D.C. Johnson, Anodic response of glucose at copper-based alloy electrodes. J. Elec. Anal. Chem. 484, 157–163 (2000)
43.
go back to reference N. Mohamad Nor, N.S. Ridhuan, K. Abdul Razak, Progress of enzymatic and non-enzymatic electrochemical glucose biosensor based on nanomaterial-modified electrode. Biosensors 12, 1136 (2022)PubMedPubMedCentralCrossRef N. Mohamad Nor, N.S. Ridhuan, K. Abdul Razak, Progress of enzymatic and non-enzymatic electrochemical glucose biosensor based on nanomaterial-modified electrode. Biosensors 12, 1136 (2022)PubMedPubMedCentralCrossRef
44.
go back to reference A. Şavk, H. Aydın, K. Cellat, F. Şen, A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt–Ni nanocomposite. J. Mol. Liq. 300, 112355 (2020)CrossRef A. Şavk, H. Aydın, K. Cellat, F. Şen, A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt–Ni nanocomposite. J. Mol. Liq. 300, 112355 (2020)CrossRef
45.
go back to reference A. Taşaltın, T.A. Türkmen, N. Taşaltın, S. Karakuş, Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 Borophene. J. Mater. Sci. Mater. Electron. 32, 10750–10760 (2021)CrossRef A. Taşaltın, T.A. Türkmen, N. Taşaltın, S. Karakuş, Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 Borophene. J. Mater. Sci. Mater. Electron. 32, 10750–10760 (2021)CrossRef
46.
go back to reference A. Taşaltın, Glucose sensing performance of PAN: β-rhombohedral borophene based non-enzymatic electrochemical biosensor. Inorg. Chem. Commun. 133, 108973 (2021)CrossRef A. Taşaltın, Glucose sensing performance of PAN: β-rhombohedral borophene based non-enzymatic electrochemical biosensor. Inorg. Chem. Commun. 133, 108973 (2021)CrossRef
47.
go back to reference J. Lillo-Ramiro, J.M. Guerrero-Villalba, M.D.L. Mota-González, F.S. Aguirre-Tostado, G. Gutiérrez-Heredia, I. Mejía-Silva, A. Carrillo-Castillo, Optical and microstructural characteristics of CuO thin films by sol–gel process and introducing in non-enzymatic glucose biosensor applications. Optik 229, 166238 (2021)CrossRef J. Lillo-Ramiro, J.M. Guerrero-Villalba, M.D.L. Mota-González, F.S. Aguirre-Tostado, G. Gutiérrez-Heredia, I. Mejía-Silva, A. Carrillo-Castillo, Optical and microstructural characteristics of CuO thin films by sol–gel process and introducing in non-enzymatic glucose biosensor applications. Optik 229, 166238 (2021)CrossRef
48.
go back to reference M.H. Fahmy Taha, H. Ashraf, W. Caesarendra, A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes. Appl. Syst. Innov. 3, 32 (2020)CrossRef M.H. Fahmy Taha, H. Ashraf, W. Caesarendra, A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes. Appl. Syst. Innov. 3, 32 (2020)CrossRef
49.
go back to reference F. Mollarasouli, M.R. Majidi, K. Asadpour-Zeynali, Enhanced activity for non-enzymatic glucose biosensor by facile electro-deposition of cauliflower-like NiWO4 nanostructures. J. Taiwan Inst. Chem. Eng. 118, 301–308 (2021)CrossRef F. Mollarasouli, M.R. Majidi, K. Asadpour-Zeynali, Enhanced activity for non-enzymatic glucose biosensor by facile electro-deposition of cauliflower-like NiWO4 nanostructures. J. Taiwan Inst. Chem. Eng. 118, 301–308 (2021)CrossRef
50.
go back to reference M. Khan, V. Nagal, U.T. Nakate, M.R. Khan, A. Khosla, R. Ahmad, Engineered CuO nanofibers with boosted non-enzymatic glucose sensing performance. J. Electrochem. Soc. 168, 067507 (2021)CrossRef M. Khan, V. Nagal, U.T. Nakate, M.R. Khan, A. Khosla, R. Ahmad, Engineered CuO nanofibers with boosted non-enzymatic glucose sensing performance. J. Electrochem. Soc. 168, 067507 (2021)CrossRef
51.
go back to reference A.S. Agnihotri, A. Varghese, M. Nidhin, Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)CrossRef A.S. Agnihotri, A. Varghese, M. Nidhin, Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021)CrossRef
52.
go back to reference S. Ding, T. Zhu, J.S. Chen, Z. Wang, C. Yuan, X.W.D. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 21, 6602–6606 (2011)CrossRef S. Ding, T. Zhu, J.S. Chen, Z. Wang, C. Yuan, X.W.D. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 21, 6602–6606 (2011)CrossRef
53.
go back to reference B. Varghese, M. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G. Subba Rao, Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mate. 20, 3360–3367 (2008)CrossRef B. Varghese, M. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G. Subba Rao, Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mate. 20, 3360–3367 (2008)CrossRef
54.
go back to reference B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W. Lou, Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2, 1188–1192 (2012)CrossRef B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W. Lou, Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2, 1188–1192 (2012)CrossRef
55.
go back to reference R. Manigandan, T. Dhanasekaran, A. Padmanaban, K. Giribabu, R. Suresh, V. Narayanan, Bifunctional hexagonal Ni/NiO nanostructures: influence of the core–shell phase on magnetism, electrochemical sensing of serotonin, and catalytic reduction of 4-nitrophenol. Nano. Adv. 1, 1531–1540 (2019)CrossRef R. Manigandan, T. Dhanasekaran, A. Padmanaban, K. Giribabu, R. Suresh, V. Narayanan, Bifunctional hexagonal Ni/NiO nanostructures: influence of the core–shell phase on magnetism, electrochemical sensing of serotonin, and catalytic reduction of 4-nitrophenol. Nano. Adv. 1, 1531–1540 (2019)CrossRef
56.
go back to reference R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018)CrossRef R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018)CrossRef
57.
go back to reference R. Eder, Electronic structure of NiO Antiferromagnetic transition and photoelectron spectra in the ordered phase. Phy. Rev. B 91, 245146 (2015)CrossRef R. Eder, Electronic structure of NiO Antiferromagnetic transition and photoelectron spectra in the ordered phase. Phy. Rev. B 91, 245146 (2015)CrossRef
58.
go back to reference F.D. Speck, K.E. Dettelbach, R.S. Sherbo, D.A. Salvatore, A. Huang, C.P. Berlinguette, On the electrolytic stability of iron-nickel oxides. Chem 2, 590–597 (2017)CrossRef F.D. Speck, K.E. Dettelbach, R.S. Sherbo, D.A. Salvatore, A. Huang, C.P. Berlinguette, On the electrolytic stability of iron-nickel oxides. Chem 2, 590–597 (2017)CrossRef
59.
go back to reference R.D. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013)PubMedCrossRef R.D. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013)PubMedCrossRef
60.
go back to reference C. Xia, X. Yanjun, W. Ning, Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuators B Chem. 153, 434–438 (2011)CrossRef C. Xia, X. Yanjun, W. Ning, Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuators B Chem. 153, 434–438 (2011)CrossRef
61.
go back to reference M. Youcef, B. Hamza, H. Nora, B. Walid, M. Salima, B. Ahmed, A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. Microchem. J. 178, 107332 (2022)CrossRef M. Youcef, B. Hamza, H. Nora, B. Walid, M. Salima, B. Ahmed, A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. Microchem. J. 178, 107332 (2022)CrossRef
62.
go back to reference D. Mishra, R. Zhou, M.M. Hassan, J. Hu, I. Gates, N. Mahinpey, Bitumen and asphaltene derived nanoporous carbon and nickel oxide/carbon composites for supercapacitor electrodes. Sci. Rep. 12, 4095 (2022)PubMedPubMedCentralCrossRef D. Mishra, R. Zhou, M.M. Hassan, J. Hu, I. Gates, N. Mahinpey, Bitumen and asphaltene derived nanoporous carbon and nickel oxide/carbon composites for supercapacitor electrodes. Sci. Rep. 12, 4095 (2022)PubMedPubMedCentralCrossRef
63.
go back to reference T. Zahra, K. Shahzad Ahmad, C. Zequine, R. Gupta, A. Thomas, M.A. Malik, S. Iram, Y.A. ElBadry, Z.M. El-Bahy, Electrochemical trapping of meta-stable NiO consolidated ZnO/PdO by biomimetic provenance for the employment of clean energy generation. Mater. Sci. Semicond. Proc. 150, 106867 (2022)CrossRef T. Zahra, K. Shahzad Ahmad, C. Zequine, R. Gupta, A. Thomas, M.A. Malik, S. Iram, Y.A. ElBadry, Z.M. El-Bahy, Electrochemical trapping of meta-stable NiO consolidated ZnO/PdO by biomimetic provenance for the employment of clean energy generation. Mater. Sci. Semicond. Proc. 150, 106867 (2022)CrossRef
64.
go back to reference S. Trafela, J. Zavašnik, S. Šturm, K.Ž Rožman, Formation of a Ni (OH)2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media. Electrochim. Acta 309, 346–353 (2019)CrossRef S. Trafela, J. Zavašnik, S. Šturm, K.Ž Rožman, Formation of a Ni (OH)2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media. Electrochim. Acta 309, 346–353 (2019)CrossRef
65.
go back to reference W. Wang, Z. Zhao, Q. Lei, W. Zhang, P. Li, W. Zhang, Hierarchically Au-functionalized derived ultrathin NiO nanosheets for highly sensitive electrochemical hydrazine detection. Appl. Surf. Sci. 542, 148539 (2021)CrossRef W. Wang, Z. Zhao, Q. Lei, W. Zhang, P. Li, W. Zhang, Hierarchically Au-functionalized derived ultrathin NiO nanosheets for highly sensitive electrochemical hydrazine detection. Appl. Surf. Sci. 542, 148539 (2021)CrossRef
66.
go back to reference R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 76538–76547 (2015)CrossRef R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 76538–76547 (2015)CrossRef
67.
go back to reference S.J. Li, Y. Xing, L.L. Hou, Z.Q. Feng, Y. Tian, J.M. Du, Facile synthesis of NiO/CuO/reduced graphene oxide nanocomposites for use in enzyme-free glucose sensing. Int. J. Electrochem. Sci. 11, 6747–6760 (2016)CrossRef S.J. Li, Y. Xing, L.L. Hou, Z.Q. Feng, Y. Tian, J.M. Du, Facile synthesis of NiO/CuO/reduced graphene oxide nanocomposites for use in enzyme-free glucose sensing. Int. J. Electrochem. Sci. 11, 6747–6760 (2016)CrossRef
68.
go back to reference K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Analyt. Biochem. 518, 143–153 (2017)PubMedCrossRef K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Analyt. Biochem. 518, 143–153 (2017)PubMedCrossRef
69.
go back to reference J. Arguello, H.A. Magosso, R. Landers, V.L. Pimentel, Y. Gushikem, Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode. Electrochim. Acta 56, 340–345 (2010)CrossRef J. Arguello, H.A. Magosso, R. Landers, V.L. Pimentel, Y. Gushikem, Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode. Electrochim. Acta 56, 340–345 (2010)CrossRef
71.
go back to reference K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177, 421–427 (2012)CrossRef K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177, 421–427 (2012)CrossRef
72.
go back to reference F. Jia, L. Zhang, X. Shang, Y. Yang, Non-aqueous sol–gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater. 20, 1050–1054 (2008)CrossRef F. Jia, L. Zhang, X. Shang, Y. Yang, Non-aqueous sol–gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater. 20, 1050–1054 (2008)CrossRef
73.
go back to reference B.A. Abbasi, J. Iqbal, Z. Khan, R. Ahmad, S. Uddin, A. Shahbaz, Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc. Res. Tech. 84, 192–201 (2021)PubMedCrossRef B.A. Abbasi, J. Iqbal, Z. Khan, R. Ahmad, S. Uddin, A. Shahbaz, Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc. Res. Tech. 84, 192–201 (2021)PubMedCrossRef
74.
go back to reference S. Uddin, L.B. Safdar, S. Anwar, J. Iqbal, S. Laila, B.A. Abbasi, Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules 26, 1548 (2021)PubMedPubMedCentralCrossRef S. Uddin, L.B. Safdar, S. Anwar, J. Iqbal, S. Laila, B.A. Abbasi, Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules 26, 1548 (2021)PubMedPubMedCentralCrossRef
75.
go back to reference J. Iqbal, B.A. Abbasi, T. Mahmood, S. Kanwal, B. Ali, S.A. Shah, Plant-derived anticancer agents: a green anticancer approach. Asian Pac. J. Trop. Biomed. 7, 1129–1150 (2017)CrossRef J. Iqbal, B.A. Abbasi, T. Mahmood, S. Kanwal, B. Ali, S.A. Shah, Plant-derived anticancer agents: a green anticancer approach. Asian Pac. J. Trop. Biomed. 7, 1129–1150 (2017)CrossRef
76.
go back to reference J. Iqbal, B.A. Abbasi, R. Batool, T. Mahmood, B. Ali, A.T. Khalil, Potential phytocompounds for developing breast cancer therapeutics nature’s healing touch. Eur. J. Pharmacol. 827, 125–148 (2018)PubMedCrossRef J. Iqbal, B.A. Abbasi, R. Batool, T. Mahmood, B. Ali, A.T. Khalil, Potential phytocompounds for developing breast cancer therapeutics nature’s healing touch. Eur. J. Pharmacol. 827, 125–148 (2018)PubMedCrossRef
77.
go back to reference A. Kar, A.K. Ray, Synthesis of nano-spherical nickel by templating hibiscus flower petals. J. Nanosci. Nanotech. 2, 17–20 (2014) A. Kar, A.K. Ray, Synthesis of nano-spherical nickel by templating hibiscus flower petals. J. Nanosci. Nanotech. 2, 17–20 (2014)
78.
go back to reference H. Jung, R. Gupta, E. Oh, Y. Kim, C. Whang, Vibrational spectroscopic studies of sol–gel derived physical and chemical bonded ORMOSILs. J. Non-cryst. Solids 351, 372–379 (2005)CrossRef H. Jung, R. Gupta, E. Oh, Y. Kim, C. Whang, Vibrational spectroscopic studies of sol–gel derived physical and chemical bonded ORMOSILs. J. Non-cryst. Solids 351, 372–379 (2005)CrossRef
79.
go back to reference C.S. Ferreira, P.L. Santos, J.A. Bonacin, R.R. Passos, L.A. Pocrifka, Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite. Mater. Rese. 18, 639–643 (2015)CrossRef C.S. Ferreira, P.L. Santos, J.A. Bonacin, R.R. Passos, L.A. Pocrifka, Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite. Mater. Rese. 18, 639–643 (2015)CrossRef
80.
go back to reference H. H. Radamson , A. Hallén , I. Sychugov, A. Azarov, Analytical Methods and Instruments for Micro- and Nanomaterials, Springer Cham, (2023). H. H. Radamson , A. Hallén , I. Sychugov, A. Azarov, Analytical Methods and Instruments for Micro- and Nanomaterials, Springer Cham, (2023).
81.
go back to reference S. Yousaf, S. Zulfiqar, M.N. Shahi, M.F. Warsi, N.F. Al-Khalli, M.F.A. Aboud, Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Internat. 46, 3750–3758 (2020)CrossRef S. Yousaf, S. Zulfiqar, M.N. Shahi, M.F. Warsi, N.F. Al-Khalli, M.F.A. Aboud, Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Internat. 46, 3750–3758 (2020)CrossRef
82.
go back to reference J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)CrossRef J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)CrossRef
83.
go back to reference K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sens. actuators B Chem. 147, 642–652 (2010)CrossRef K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sens. actuators B Chem. 147, 642–652 (2010)CrossRef
84.
go back to reference Y. Zhang, L. Su, D. Manuzzi, H.V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosen. Bioelect. 31, 426–432 (2012)CrossRef Y. Zhang, L. Su, D. Manuzzi, H.V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosen. Bioelect. 31, 426–432 (2012)CrossRef
85.
go back to reference M. Li, X. Bo, Z. Mu, Y. Zhang, L. Guo, Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem. 192, 261–268 (2014)CrossRef M. Li, X. Bo, Z. Mu, Y. Zhang, L. Guo, Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens. Actuators B Chem. 192, 261–268 (2014)CrossRef
86.
go back to reference Y. Ni, J. Xu, Q. Liang, S. Shao, Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens. Actuators B Chem. 250, 491–498 (2017)CrossRef Y. Ni, J. Xu, Q. Liang, S. Shao, Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens. Actuators B Chem. 250, 491–498 (2017)CrossRef
87.
go back to reference Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B Chem. 242, 825–834 (2017)CrossRef Z. Deng, H. Long, Q. Wei, Z. Yu, B. Zhou, Y. Wang, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B Chem. 242, 825–834 (2017)CrossRef
88.
go back to reference L. Sheng, Z. Li, A. Meng, Q. Xu, Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@ PEDOT-rGO nanocomposite. Sens. Actuators B Chem. 254, 1206–1215 (2018)CrossRef L. Sheng, Z. Li, A. Meng, Q. Xu, Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@ PEDOT-rGO nanocomposite. Sens. Actuators B Chem. 254, 1206–1215 (2018)CrossRef
89.
go back to reference Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B Chem. 191, 86–93 (2014)CrossRef Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B Chem. 191, 86–93 (2014)CrossRef
90.
go back to reference J. Xu, N. Xu, X. Zhang, P. Xu, B. Gao, X. Peng, Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sens. Actuators B Chem. 244, 38–46 (2017)CrossRef J. Xu, N. Xu, X. Zhang, P. Xu, B. Gao, X. Peng, Phase separation induced rhizobia-like Ni nanoparticles and TiO2 nanowires composite arrays for enzyme-free glucose sensor. Sens. Actuators B Chem. 244, 38–46 (2017)CrossRef
91.
go back to reference P. Salazar, V. Rico, A.R. González-Elipe, Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 226, 436–443 (2016)CrossRef P. Salazar, V. Rico, A.R. González-Elipe, Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 226, 436–443 (2016)CrossRef
92.
go back to reference M. Youcef, B. Hamza, H. Nora, B. Walid, M. Salima, B. Ahmed, A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. Microch. Jou. 178, 107332 (2022)CrossRef M. Youcef, B. Hamza, H. Nora, B. Walid, M. Salima, B. Ahmed, A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing. Microch. Jou. 178, 107332 (2022)CrossRef
Metadata
Title
Glucose sensing via green synthesis of NiO–SiO2 composites with citrus lemon peel extract
Authors
Ihsan Ali Mahar
Aneela Tahira
Mehnaz Parveen
Ahmed Ali Hulio
Zahoor Ahmed Ibupoto
Muhammad Ali Bhatti
Elmuez Dawi
Ayman Nafady
Riyadh H. Alshammari
Brigitte Vigolo
Kezhen Qi
Elfatih Mustafa
Lama Saleem
Akram Ashames
Zafar Hussain Ibupoto
Publication date
01-03-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12156-9

Other articles of this Issue 7/2024

Journal of Materials Science: Materials in Electronics 7/2024 Go to the issue