Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Governing Equations

Author : José María Montanero

Published in: Tip Streaming of Simple and Complex Fluids

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the equations framing the tip streaming phenomenon. These equations provide the theoretical framework to analyze the microfluidic applications studied in other chapters. We consider simple models for describing the effects of viscoelasticity, surfactants, and externally applied electric fields. In this latter case, we introduce the frequently used charge-conservative approximation and leaky-dielectric model, which allow for examining electrohydrodynamic processes in a relatively simple way. The relationship between these approaches and the full electrokinetic model is discussed.
We introduce some rheological models to obtain the polymer stress in dilute viscoelastic liquids. We present the equations describing the transport and conservation of surfactants in the hydrodynamic bulk and interface, simple kinetic models to account for the adsorption-desorption processes, and commonly used equations of state to calculate the interfacial tension as a function of the surfactant surface density. The surface viscous stresses caused by a Newtonian surfactant monolayer are considered as well. The chapter closes with the one-dimensional (1D) approximation for slender configurations, such as jets with relatively small spatial accelerations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In Eqs. (2.24)–(2.27), \(\varepsilon \) is the fluid electrical permittivity. This symbol stands for the relative electrical permittivity in the rest of the text.
 
Literature
1.
go back to reference Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef
2.
go back to reference Ponce-Torres A, Ortega E, Rubio M, Rubio A, Vega EJ, Montanero JM (2019) Gaseous flow focusing for spinning micro and nanofibers. Polymer 178(121):623 Ponce-Torres A, Ortega E, Rubio M, Rubio A, Vega EJ, Montanero JM (2019) Gaseous flow focusing for spinning micro and nanofibers. Polymer 178(121):623
3.
go back to reference Oliveira JE, Moraes EA, Costa RGF, Afonso AS, Mattoso LHC, Orts WJ, Medeiros ES (2011) Nano and submicrometric fibers of poly(d, l-lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405CrossRef Oliveira JE, Moraes EA, Costa RGF, Afonso AS, Mattoso LHC, Orts WJ, Medeiros ES (2011) Nano and submicrometric fibers of poly(d, l-lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405CrossRef
4.
go back to reference Wang B, Yao Y, Peng J, Lin Y, Liu W, Luo Y, Xiang R, Li R, Wu D (2009) Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning. J Appl Polym Sci 114:883–891CrossRef Wang B, Yao Y, Peng J, Lin Y, Liu W, Luo Y, Xiang R, Li R, Wu D (2009) Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning. J Appl Polym Sci 114:883–891CrossRef
5.
go back to reference Gañán-Calvo AM (2005) Enhanced liquid atomization: from flow-focusing to flow-blurring. Appl Phys Lett 86(214):101 Gañán-Calvo AM (2005) Enhanced liquid atomization: from flow-focusing to flow-blurring. Appl Phys Lett 86(214):101
6.
go back to reference Daristotle JL, Behrens AM, Sandler AD, Kofinas P (2016) A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 8:34,951–34,963 Daristotle JL, Behrens AM, Sandler AD, Kofinas P (2016) A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 8:34,951–34,963
7.
go back to reference Chapman HN et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–79CrossRef Chapman HN et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–79CrossRef
8.
go back to reference Gañán-Calvo AM (2007) Electro-flow focusing: the high-conductivity low-viscosity limit. Phys Rev Lett 98(134):503 Gañán-Calvo AM (2007) Electro-flow focusing: the high-conductivity low-viscosity limit. Phys Rev Lett 98(134):503
9.
go back to reference Jiang J, Wang X, Li W, Liu J, Liu Y, Zheng G (2018) Electrohydrodynamic direct-writing micropatterns with assisted airflow. Micromachines 9:456CrossRef Jiang J, Wang X, Li W, Liu J, Liu Y, Zheng G (2018) Electrohydrodynamic direct-writing micropatterns with assisted airflow. Micromachines 9:456CrossRef
10.
go back to reference Cruz-Mazo F, Herrada MA, Gañán-Calvo AM, Montanero JM (2017) Global stability of axisymmetric flow focusing. J Fluid Mech 832:329–344MathSciNetCrossRef Cruz-Mazo F, Herrada MA, Gañán-Calvo AM, Montanero JM (2017) Global stability of axisymmetric flow focusing. J Fluid Mech 832:329–344MathSciNetCrossRef
11.
go back to reference Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(274):501 Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(274):501
12.
go back to reference Gañán-Calvo AM (2004) Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys Rev E 69(027):301 Gañán-Calvo AM (2004) Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys Rev E 69(027):301
13.
go back to reference Rodríguez-Rodríguez J, Sevilla A, Martínez-Bazán C, Gordillo JM (2015) Generation of microbubbles with applications to industry and medicine. Annu Rev Fluid Mech 47:405–429MathSciNetCrossRef Rodríguez-Rodríguez J, Sevilla A, Martínez-Bazán C, Gordillo JM (2015) Generation of microbubbles with applications to industry and medicine. Annu Rev Fluid Mech 47:405–429MathSciNetCrossRef
14.
go back to reference Gibbs JW (1928) The collected works of J. Willard Gibbs, Longmans, New York, USA Gibbs JW (1928) The collected works of J. Willard Gibbs, Longmans, New York, USA
16.
go back to reference Thompson JF, Warsi ZUA (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review. J Comput Phys 47:1–108MathSciNetCrossRef Thompson JF, Warsi ZUA (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review. J Comput Phys 47:1–108MathSciNetCrossRef
17.
go back to reference Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRef Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRef
18.
go back to reference Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897CrossRef Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897CrossRef
19.
go back to reference Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287CrossRef Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287CrossRef
20.
go back to reference Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400CrossRef Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400CrossRef
21.
go back to reference Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3:69–91CrossRef Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3:69–91CrossRef
22.
go back to reference Taylor G (1964) Disintegration of water drops in electric field. Proc R Soc Lond A 280:383–397CrossRef Taylor G (1964) Disintegration of water drops in electric field. Proc R Soc Lond A 280:383–397CrossRef
23.
go back to reference Gañán-Calvo AM, López-Herrera JM, Herrada MA, Ramos A, Montanero JM (2018) Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci 125:32–56CrossRef Gañán-Calvo AM, López-Herrera JM, Herrada MA, Ramos A, Montanero JM (2018) Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci 125:32–56CrossRef
24.
go back to reference Doshi J, Reneker DR (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–60CrossRef Doshi J, Reneker DR (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–60CrossRef
25.
go back to reference Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026CrossRef Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026CrossRef
26.
go back to reference Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030CrossRef Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030CrossRef
27.
go back to reference Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef
28.
go back to reference Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym Advan Technol 22:310–317CrossRef Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym Advan Technol 22:310–317CrossRef
29.
go back to reference Gañán-Calvo AM, Lasheras JC, Dávila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci 25:1121–1142CrossRef Gañán-Calvo AM, Lasheras JC, Dávila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci 25:1121–1142CrossRef
30.
31.
go back to reference Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York
32.
go back to reference Conroy DT, Matar K, Craster RV, Papageorgiou DT (2011) Breakup of an electrified viscous thread with charged surfactants. Phys Fluids 23(022):103 Conroy DT, Matar K, Craster RV, Papageorgiou DT (2011) Breakup of an electrified viscous thread with charged surfactants. Phys Fluids 23(022):103
33.
go back to reference López-Herrera J, Herrada M, Gañán-Calvo A (2023) Electrokinetic modelling of cone-jet electrosprays. J Fluid Mech A 19:964MathSciNet López-Herrera J, Herrada M, Gañán-Calvo A (2023) Electrokinetic modelling of cone-jet electrosprays. J Fluid Mech A 19:964MathSciNet
34.
go back to reference Herrada MA, Montanero JM (2016) A numerical method to study the dynamics of capillary fluid systems. J Comput Phys 306:137–147MathSciNetCrossRef Herrada MA, Montanero JM (2016) A numerical method to study the dynamics of capillary fluid systems. J Comput Phys 306:137–147MathSciNetCrossRef
35.
go back to reference Ferrera C, López-Herrera JM, Herrada MA, Montanero JM, Acero AJ (2013) Dynamical behavior of electrified pendant drops. Phys Fluids 25(012):104 Ferrera C, López-Herrera JM, Herrada MA, Montanero JM, Acero AJ (2013) Dynamical behavior of electrified pendant drops. Phys Fluids 25(012):104
36.
go back to reference Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(32):357 Gañán-Calvo AM, López-Herrera JM, Rebollo-Muñoz N, Montanero JM (2016) The onset of electrospray: the universal scaling laws of the first ejection. Sci Rep 6(32):357
37.
go back to reference Dastourani H, Jahannama MR, Eslami-Majd A (2018) A physical insight into electrospray process in cone-jet mode: role of operating parameters. Int J Heat Fluid Flow 70:315–335CrossRef Dastourani H, Jahannama MR, Eslami-Majd A (2018) A physical insight into electrospray process in cone-jet mode: role of operating parameters. Int J Heat Fluid Flow 70:315–335CrossRef
38.
go back to reference Gomez A, Tang K (1994) Charge and fission of droplets in electrostatic sprays. Phys Fluids 6:404–414CrossRef Gomez A, Tang K (1994) Charge and fission of droplets in electrostatic sprays. Phys Fluids 6:404–414CrossRef
39.
go back to reference Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30:873–893CrossRef Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30:873–893CrossRef
40.
go back to reference Hijano AJ, Loscertales IG, Ibáñez SE, Higuera FJ (2015) Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid. Phys Rev E 91(013):011 Hijano AJ, Loscertales IG, Ibáñez SE, Higuera FJ (2015) Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid. Phys Rev E 91(013):011
41.
go back to reference Yeo LY, Gagnon Z, Chang HC (2005) AC electrospray biomaterials synthesis. Biomaterials 26:6122–6128CrossRef Yeo LY, Gagnon Z, Chang HC (2005) AC electrospray biomaterials synthesis. Biomaterials 26:6122–6128CrossRef
42.
go back to reference Chetwani N, Maheshwari S, Chang HC (2008) Universal cone angle of AC electrosprays due to net charge entrainment. Phys Rev Lett 101(204):501 Chetwani N, Maheshwari S, Chang HC (2008) Universal cone angle of AC electrosprays due to net charge entrainment. Phys Rev Lett 101(204):501
43.
go back to reference Maheshwari S, Chang HC (2009) Assembly of multi-stranded nanofiber threads through AC electrospinning. Adv Mater 21:349–354CrossRef Maheshwari S, Chang HC (2009) Assembly of multi-stranded nanofiber threads through AC electrospinning. Adv Mater 21:349–354CrossRef
44.
go back to reference Chetwani N, Cassou C, Go D, Chang HC (2010) High-frequency AC electrospray ionization source for mass spectrometry of biomolecules. J Am Soc Mass Spectrom 21:1852–1856CrossRef Chetwani N, Cassou C, Go D, Chang HC (2010) High-frequency AC electrospray ionization source for mass spectrometry of biomolecules. J Am Soc Mass Spectrom 21:1852–1856CrossRef
45.
go back to reference López-Herrera JM, Gañán-Calvo AM, Popinet S, Herrada MA (2015) Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Int J Multiphase Flow 71:14–21MathSciNetCrossRef López-Herrera JM, Gañán-Calvo AM, Popinet S, Herrada MA (2015) Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Int J Multiphase Flow 71:14–21MathSciNetCrossRef
46.
go back to reference Pillai R, Berry JD, Harvie DJE, Davidson MR (2016) Electrokinetics of isolated electrified drops. Soft Matter 12:3310–3325CrossRef Pillai R, Berry JD, Harvie DJE, Davidson MR (2016) Electrokinetics of isolated electrified drops. Soft Matter 12:3310–3325CrossRef
47.
go back to reference Rubio M, Sadek S, Vega EJ, Gañán-Calvo AM, Montanero JM (2021) Electrical conductivity of a stretching viscoelastic filament. Materials 14:1–12CrossRef Rubio M, Sadek S, Vega EJ, Gañán-Calvo AM, Montanero JM (2021) Electrical conductivity of a stretching viscoelastic filament. Materials 14:1–12CrossRef
48.
go back to reference Taylor GI (1966) Conical free surfaces and fluid interfaces. In: Applied mechanics. Springer, Berlin, pp 790–796 Taylor GI (1966) Conical free surfaces and fluid interfaces. In: Applied mechanics. Springer, Berlin, pp 790–796
49.
go back to reference Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146CrossRef Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146CrossRef
50.
go back to reference Schnitzer O, Yariv E (2015) The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J Fluid Mech 773:1–13MathSciNetCrossRef Schnitzer O, Yariv E (2015) The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J Fluid Mech 773:1–13MathSciNetCrossRef
52.
go back to reference Higuera FJ (2010) Numerical computation of the domain of operation of an electrospray of a very viscous liquid. J Fluid Mech 648:35–52CrossRef Higuera FJ (2010) Numerical computation of the domain of operation of an electrospray of a very viscous liquid. J Fluid Mech 648:35–52CrossRef
53.
go back to reference Herrada MA, López-Herrera JM, Gañán-Calvo AM, Vega EJ, Montanero JM, Popinet S, (2012) Numerical simulation of electrospray in the cone-jet mode. Phys Rev E 86(026):305 Herrada MA, López-Herrera JM, Gañán-Calvo AM, Vega EJ, Montanero JM, Popinet S, (2012) Numerical simulation of electrospray in the cone-jet mode. Phys Rev E 86(026):305
54.
go back to reference Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172MathSciNetCrossRef Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172MathSciNetCrossRef
55.
go back to reference Borra JP (2018) Review on water electro-sprays and applications of charged dropswith focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols. J Aerosol Sci 125:208–236CrossRef Borra JP (2018) Review on water electro-sprays and applications of charged dropswith focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols. J Aerosol Sci 125:208–236CrossRef
56.
go back to reference Gamero-Castaño M, Magnani M (2019) The minimum flow rate of electrosprays in the cone-jet mode. J Fluid Mech 876:553–572MathSciNetCrossRef Gamero-Castaño M, Magnani M (2019) The minimum flow rate of electrosprays in the cone-jet mode. J Fluid Mech 876:553–572MathSciNetCrossRef
57.
go back to reference Jiang Z, Gan Y, Shi Y (2020) An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge. J Aerosol Sci 139(105):463 Jiang Z, Gan Y, Shi Y (2020) An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge. J Aerosol Sci 139(105):463
58.
go back to reference Carroll CP, Joo YL (2006) Electrospinning of viscoelastic Boger fluids: modeling and experiments. Phys Fluids 18(053):102 Carroll CP, Joo YL (2006) Electrospinning of viscoelastic Boger fluids: modeling and experiments. Phys Fluids 18(053):102
59.
go back to reference Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef
60.
go back to reference Yeo LY, Lastochkin D, Wang SC, Chang HC (2004) A new AC electrospray mechanism by Maxwell-Wagner polarization and capillary resonance. Phys Rev Lett 92(133):902 Yeo LY, Lastochkin D, Wang SC, Chang HC (2004) A new AC electrospray mechanism by Maxwell-Wagner polarization and capillary resonance. Phys Rev Lett 92(133):902
61.
go back to reference Demekhin E, Polyanskikh S, Ramos A (2011) Taylor cones in a leaky dielectric liquid under an AC electric field. Phys Rev E 84(035):301(R) Demekhin E, Polyanskikh S, Ramos A (2011) Taylor cones in a leaky dielectric liquid under an AC electric field. Phys Rev E 84(035):301(R)
62.
go back to reference Higuera FJ (2008) Model of the meniscus of an ionic-liquid ion source. Phys Rev E 77(026):308 Higuera FJ (2008) Model of the meniscus of an ionic-liquid ion source. Phys Rev E 77(026):308
63.
go back to reference Coffman CS, Martínez-Sánchez M, Lozano PC (2019) Electrohydrodynamics of an ionic liquid meniscus during evaporation of ions in a regime of high electric field. Phys Rev E 99(063):108 Coffman CS, Martínez-Sánchez M, Lozano PC (2019) Electrohydrodynamics of an ionic liquid meniscus during evaporation of ions in a regime of high electric field. Phys Rev E 99(063):108
64.
go back to reference Rubio M, Ponce-Torres A, Herrada MA, Gañán-Calvo AM, Montanero JM (2021) Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament. Phys Fluids 33(092):114 Rubio M, Ponce-Torres A, Herrada MA, Gañán-Calvo AM, Montanero JM (2021) Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament. Phys Fluids 33(092):114
65.
go back to reference Anthony CR et al (2023) Sharp interface methods for simulation and analysis of free surface flows with singularities: Breakup and coalescence. Annu Rev Fluid Mech 55:707–747CrossRef Anthony CR et al (2023) Sharp interface methods for simulation and analysis of free surface flows with singularities: Breakup and coalescence. Annu Rev Fluid Mech 55:707–747CrossRef
67.
go back to reference Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006) How dilute are dilute solutions in extensional flows? J Rheol 50:849–881CrossRef Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006) How dilute are dilute solutions in extensional flows? J Rheol 50:849–881CrossRef
68.
go back to reference Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York
69.
go back to reference Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72:31–53CrossRef Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72:31–53CrossRef
70.
go back to reference Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Roy Soc Lond 200:523–541MathSciNet Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Roy Soc Lond 200:523–541MathSciNet
71.
go back to reference Snoeijer JH, Pandey A, Herrada MA, Eggers J (2020) The relationship between viscoelasticity and elasticity. Proc R Soc A 476(20200):419MathSciNet Snoeijer JH, Pandey A, Herrada MA, Eggers J (2020) The relationship between viscoelasticity and elasticity. Proc R Soc A 476(20200):419MathSciNet
72.
go back to reference Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 42:716–726 Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 42:716–726
73.
go back to reference Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14:3912–3926CrossRef Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14:3912–3926CrossRef
74.
go back to reference Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: computations. J Non-Newtonian Fluid Mech 165:839–851CrossRef Zhoua D, Feng JJ (2010) Selective withdrawal of polymer solutions: computations. J Non-Newtonian Fluid Mech 165:839–851CrossRef
75.
go back to reference Turkoz E, López-Herrera JM, Eggers J, Arnold CB, Deike L (2018) Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model. J Fluid Mech 851:R2MathSciNetCrossRef Turkoz E, López-Herrera JM, Eggers J, Arnold CB, Deike L (2018) Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model. J Fluid Mech 851:R2MathSciNetCrossRef
76.
go back to reference Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRef Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRef
77.
go back to reference Ponce-Torres A, Acero AJ, Herrada MA, Montanero JM (2018) On the validity of the Jeffreys (Oldroyd-B) model to describe the oscillations of a viscoelastic pendant drop. J Non-Newtonian Fluid Mech 260:69–75MathSciNetCrossRef Ponce-Torres A, Acero AJ, Herrada MA, Montanero JM (2018) On the validity of the Jeffreys (Oldroyd-B) model to describe the oscillations of a viscoelastic pendant drop. J Non-Newtonian Fluid Mech 260:69–75MathSciNetCrossRef
79.
go back to reference Craster RV, Matar OK, Papageorgiou DT (2009) Breakup of surfactant-laden jets above the critical micelle concentration. J Fluid Mech 629:195–219MathSciNetCrossRef Craster RV, Matar OK, Papageorgiou DT (2009) Breakup of surfactant-laden jets above the critical micelle concentration. J Fluid Mech 629:195–219MathSciNetCrossRef
80.
81.
go back to reference Tricot YM (1997) Surfactants: static and dynamic surface tension, liquid film coating, vol 1. Chapman and Hall, pp 100–136 Tricot YM (1997) Surfactants: static and dynamic surface tension, liquid film coating, vol 1. Chapman and Hall, pp 100–136
82.
go back to reference Chang CH, Franses EI (1995) Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf A 100:1–45CrossRef Chang CH, Franses EI (1995) Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf A 100:1–45CrossRef
83.
go back to reference Moyle TM, Walker LM, Anna SL (2012) Predicting conditions for microscale surfactant mediated tipstreaming. Phys Fluids 24(082):110 Moyle TM, Walker LM, Anna SL (2012) Predicting conditions for microscale surfactant mediated tipstreaming. Phys Fluids 24(082):110
84.
go back to reference Ponce-Torres A, Montanero JM, Herrada MA, Vega EJ, Vega JM (2017) Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys Rev Lett 118(024):501 Ponce-Torres A, Montanero JM, Herrada MA, Vega EJ, Vega JM (2017) Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys Rev Lett 118(024):501
85.
go back to reference Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065 Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM (2020) Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep 10(16):065
86.
go back to reference Jin F, Stebe KJ (2007) The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys Fluids 19(112):103 Jin F, Stebe KJ (2007) The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys Fluids 19(112):103
87.
88.
go back to reference Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12:98–108 Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12:98–108
89.
go back to reference Martínez-Calvo A, Sevilla A (2018) Temporal stability of free liquid threads with surface viscoelasticity. J Fluid Mech 846:877–901MathSciNetCrossRef Martínez-Calvo A, Sevilla A (2018) Temporal stability of free liquid threads with surface viscoelasticity. J Fluid Mech 846:877–901MathSciNetCrossRef
90.
91.
go back to reference Jaensson NO, Anderson PD, Vermant J (2021) Computational interfacial rheology. J Non-Newtonian Fluid Mech 290(104):507MathSciNet Jaensson NO, Anderson PD, Vermant J (2021) Computational interfacial rheology. J Non-Newtonian Fluid Mech 290(104):507MathSciNet
92.
go back to reference Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow influence of surface viscosity. J Fluid Mech 934:A26 Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow influence of surface viscosity. J Fluid Mech 934:A26
93.
go back to reference Martínez-Calvo A (2020) Dynamics of complex capillary flows: stability, rupture, and influence of surfactants. Doctoral dissertation Martínez-Calvo A (2020) Dynamics of complex capillary flows: stability, rupture, and influence of surfactants. Doctoral dissertation
94.
go back to reference Luo ZY, Shang XL, Bai BF (2019) Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow. J Fluid Mech 858:91–121MathSciNetCrossRef Luo ZY, Shang XL, Bai BF (2019) Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow. J Fluid Mech 858:91–121MathSciNetCrossRef
95.
go back to reference Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA (2013) Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc Natl Acad Sci 110:E3054–E3060CrossRef Kim K, Choi SQ, Zell ZA, Squires TM, Zasadzinski JA (2013) Effect of cholesterol nanodomains on monolayer morphology and dynamics. Proc Natl Acad Sci 110:E3054–E3060CrossRef
96.
go back to reference Samaniuk JR, Mermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matt 10:7023–7033CrossRef Samaniuk JR, Mermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matt 10:7023–7033CrossRef
97.
go back to reference Manikantan H, Squires TM (2017) Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows. Phys Rev Fluids 2(023):301 Manikantan H, Squires TM (2017) Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows. Phys Rev Fluids 2(023):301
98.
go back to reference Ozan SC, Jakobsen HA (2019) On the role of the surface rheology in film drainage between fluid particles. Int J Multiphase Flow 120(103):103MathSciNet Ozan SC, Jakobsen HA (2019) On the role of the surface rheology in film drainage between fluid particles. Int J Multiphase Flow 120(103):103MathSciNet
99.
go back to reference Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci 111:3677–3682CrossRef Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci 111:3677–3682CrossRef
100.
go back to reference Edwards DA, Brenner H, Wasan DT (1991) Interfacial transport processes and rheology. Butterworth-Heinemann Edwards DA, Brenner H, Wasan DT (1991) Interfacial transport processes and rheology. Butterworth-Heinemann
101.
go back to reference Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flow. Phys Rev Lett 71:3458–3460CrossRef Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flow. Phys Rev Lett 71:3458–3460CrossRef
102.
go back to reference Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef
103.
go back to reference Gañán-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30:863–872CrossRef Gañán-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30:863–872CrossRef
104.
go back to reference Feng JJ (2003) Stretching of a straight electrically charged viscoelastic jet. J Non-Newtonian Fluid Mech 116:55–70CrossRef Feng JJ (2003) Stretching of a straight electrically charged viscoelastic jet. J Non-Newtonian Fluid Mech 116:55–70CrossRef
105.
go back to reference Wee H, Wagoner BW, Kamat PM, Basaran OA (2020) Effects of surface viscosity on breakup of viscous threads. Phys Rev Lett 124(204):501 Wee H, Wagoner BW, Kamat PM, Basaran OA (2020) Effects of surface viscosity on breakup of viscous threads. Phys Rev Lett 124(204):501
106.
go back to reference Gañán-Calvo AM (1999) The electrohydrodynamic atomization of liquids today. J Aerosol Sci 30:S547–S548CrossRef Gañán-Calvo AM (1999) The electrohydrodynamic atomization of liquids today. J Aerosol Sci 30:S547–S548CrossRef
107.
go back to reference Gadkari S (2017) Influence of polymer relaxation time on the electrospinning process: numerical investigation. Polymers 9:501CrossRef Gadkari S (2017) Influence of polymer relaxation time on the electrospinning process: numerical investigation. Polymers 9:501CrossRef
108.
go back to reference Gañán-Calvo AM (2004) On the general scaling theory for electrospraying. J Fluid Mech 507:203–212CrossRef Gañán-Calvo AM (2004) On the general scaling theory for electrospraying. J Fluid Mech 507:203–212CrossRef
109.
go back to reference Hu T, Fu Q, Yang L (2020) Falling film with insoluble surfactants: effects of surface elasticity and surface viscosities. J Fluid Mech 889:A16 Hu T, Fu Q, Yang L (2020) Falling film with insoluble surfactants: effects of surface elasticity and surface viscosities. J Fluid Mech 889:A16
110.
go back to reference López-Herrera JM, Herrada MA, Montanero JM, Rebollo-Muñoz N, Gañán-Calvo AM (2013) On the validity and applicability of the one-dimensional approximation in cone-jet electrospray. J Aerosol Sci 61:60–69CrossRef López-Herrera JM, Herrada MA, Montanero JM, Rebollo-Muñoz N, Gañán-Calvo AM (2013) On the validity and applicability of the one-dimensional approximation in cone-jet electrospray. J Aerosol Sci 61:60–69CrossRef
111.
go back to reference Javadi A, Eggers J, Bonn D, Habibi M, Ribe NM (2013) Delayed capillary breakup of falling viscous jets. Phys Rev Lett 110(144):501 Javadi A, Eggers J, Bonn D, Habibi M, Ribe NM (2013) Delayed capillary breakup of falling viscous jets. Phys Rev Lett 110(144):501
112.
go back to reference Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–357CrossRef Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–357CrossRef
113.
go back to reference Gañán-Calvo AM, Ferrera C, Montanero JM (2011) Universal size and shape of viscous capillary jets: application to gas-focused microjets. J Fluid Mech 670:427–438CrossRef Gañán-Calvo AM, Ferrera C, Montanero JM (2011) Universal size and shape of viscous capillary jets: application to gas-focused microjets. J Fluid Mech 670:427–438CrossRef
115.
go back to reference Montanero JM, Herrada MA, Ferrera C, Vega EJ, Gañán-Calvo AM (2011) On the validity of a universal solution for viscous capillary jets. Phys Fluids 23(122):103 Montanero JM, Herrada MA, Ferrera C, Vega EJ, Gañán-Calvo AM (2011) On the validity of a universal solution for viscous capillary jets. Phys Fluids 23(122):103
Metadata
Title
Governing Equations
Author
José María Montanero
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52768-5_2

Premium Partners