Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Theoretical Methods

Author : José María Montanero

Published in: Tip Streaming of Simple and Complex Fluids

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter briefly describes the theoretical approaches commonly used to gain insight into the tip streaming phenomenon. These approaches allow one to solve or at least obtain information from the governing equations presented in the previous chapter.
We discuss the main characteristics of direct numerical simulations and global and local stability analyses. The differences between these two last approaches are explained to emphasize the importance of the global stability analysis for tip streaming. Concepts such as global modes, asymptotic stability, and short-term response are also discussed.
The temporal and spatiotemporal local stability analyses provide information on the behavior of the jets emitted in the microjetting mode of the tip streaming configurations. This chapter closes with some results obtained from those analyses and directly related to those configurations, including the effects of electric fields, surfactants, and viscoelasticity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ferziger JH, Peric M (2013) Computational methods for fluid dynamics. Springer Ferziger JH, Peric M (2013) Computational methods for fluid dynamics. Springer
2.
go back to reference Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190:572–600MathSciNetCrossRef Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190:572–600MathSciNetCrossRef
3.
go back to reference Karniadakis G, Sherwin SJ (1999) Spectral/hp element methods for CFD. Oxford University Press Karniadakis G, Sherwin SJ (1999) Spectral/hp element methods for CFD. Oxford University Press
4.
go back to reference Canuto C, Hussaini MY, Quarteroni A (2007) Spectral methods: fundamentals in single domains. Springer Canuto C, Hussaini MY, Quarteroni A (2007) Spectral methods: fundamentals in single domains. Springer
5.
go back to reference Boyd JP (1989) Chebyshev and Fourier spectral methods. Springer Boyd JP (1989) Chebyshev and Fourier spectral methods. Springer
6.
go back to reference Khorrami MR (1989) Application of spectral collocation techniques to the stability of swirling flows. J Comput Phys 81:206–229CrossRef Khorrami MR (1989) Application of spectral collocation techniques to the stability of swirling flows. J Comput Phys 81:206–229CrossRef
7.
go back to reference Higuera FJ (2006) Stationary viscosity-dominated electrified capillary jets. J Fluid Mech 558:143–152CrossRef Higuera FJ (2006) Stationary viscosity-dominated electrified capillary jets. J Fluid Mech 558:143–152CrossRef
8.
go back to reference Gamero-Castaño M, Magnani M (2019) Numerical simulation of electrospraying in the cone-jet mode. J Fluid Mech 859:247–267MathSciNetCrossRef Gamero-Castaño M, Magnani M (2019) Numerical simulation of electrospraying in the cone-jet mode. J Fluid Mech 859:247–267MathSciNetCrossRef
9.
go back to reference Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRef Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRef
10.
go back to reference Chang YC, Hou TY, Merriman B, Osher S (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124:449–464MathSciNetCrossRef Chang YC, Hou TY, Merriman B, Osher S (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124:449–464MathSciNetCrossRef
12.
go back to reference Verfurth R (1994) A posteriori error estimation and adaptive mesh-refinement techniques. J Comput Appl Math 50:67–83MathSciNetCrossRef Verfurth R (1994) A posteriori error estimation and adaptive mesh-refinement techniques. J Comput Appl Math 50:67–83MathSciNetCrossRef
13.
go back to reference Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRef Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRef
14.
go back to reference Zahoor R, Belsak G, Bajt S, Sarler B (2018) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics 22:87CrossRef Zahoor R, Belsak G, Bajt S, Sarler B (2018) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics 22:87CrossRef
15.
go back to reference Mu K, Qiao R, Guo J, Yang C, Wu Y, Si T (2021) Parametric study on stability and morphology of liquid cone in flow focusing. Int J Multiphase Flow 135(103):507MathSciNet Mu K, Qiao R, Guo J, Yang C, Wu Y, Si T (2021) Parametric study on stability and morphology of liquid cone in flow focusing. Int J Multiphase Flow 135(103):507MathSciNet
16.
go back to reference Donea J, Huerta A, Ponthot JP, Rodríguez-Ferrán A (2004) Arbitrary Lagrangian–Eulerian methods. In: Encyclopedia of computational mechanics. Wiley, pp 413–437 Donea J, Huerta A, Ponthot JP, Rodríguez-Ferrán A (2004) Arbitrary Lagrangian–Eulerian methods. In: Encyclopedia of computational mechanics. Wiley, pp 413–437
17.
go back to reference Anthony CR et al (2023) Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. Annu Rev Fluid Mech 55:707–747CrossRef Anthony CR et al (2023) Sharp interface methods for simulation and analysis of free surface flows with singularities: breakup and coalescence. Annu Rev Fluid Mech 55:707–747CrossRef
18.
go back to reference Collins RT, Sambath K, Harris MT, Basaran OA (2013) Universal scaling laws for the disintegration of electrified drops. Proc Nat Acad Sci 110:4905–4910CrossRef Collins RT, Sambath K, Harris MT, Basaran OA (2013) Universal scaling laws for the disintegration of electrified drops. Proc Nat Acad Sci 110:4905–4910CrossRef
19.
go back to reference Thompson JF, Warsi ZUA (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review. J Comput Phys 47:1–108MathSciNetCrossRef Thompson JF, Warsi ZUA (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review. J Comput Phys 47:1–108MathSciNetCrossRef
20.
go back to reference Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical grid generation: foundations and applications. Elsevier Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical grid generation: foundations and applications. Elsevier
21.
go back to reference Herrada MA, Montanero JM (2016) A numerical method to study the dynamics of capillary fluid systems. J Comput Phys 306:137–147MathSciNetCrossRef Herrada MA, Montanero JM (2016) A numerical method to study the dynamics of capillary fluid systems. J Comput Phys 306:137–147MathSciNetCrossRef
22.
go back to reference Dimakopoulos Y, Tsamopoulos J (2003) A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations. J Comput Phys 192:494–522CrossRef Dimakopoulos Y, Tsamopoulos J (2003) A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations. J Comput Phys 192:494–522CrossRef
23.
go back to reference Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow: influence of surface viscosity. J Fluid Mech 934:A26 Herrada MA, Ponce-Torres A, Rubio M, Eggers J, Montanero JM (2022) Stability and tip streaming of a surfactant-loaded drop in an extensional flow: influence of surface viscosity. J Fluid Mech 934:A26
24.
go back to reference Chomaz J (2005) Global instabilities in spatially developing flows. Annu Rev Fluid Mech 37:357–392CrossRef Chomaz J (2005) Global instabilities in spatially developing flows. Annu Rev Fluid Mech 37:357–392CrossRef
26.
go back to reference Cruz-Mazo F, Herrada MA, Gañán-Calvo AM, Montanero JM (2017) Global stability of axisymmetric flow focusing. J Fluid Mech 832:329–344MathSciNetCrossRef Cruz-Mazo F, Herrada MA, Gañán-Calvo AM, Montanero JM (2017) Global stability of axisymmetric flow focusing. J Fluid Mech 832:329–344MathSciNetCrossRef
27.
go back to reference Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172MathSciNetCrossRef Ponce-Torres A, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM, Montanero JM (2018) The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J Fluid Mech 857:142–172MathSciNetCrossRef
28.
go back to reference Blanco-Trejo S, Herrada MA, Gañán-Calvo AM, Montanero JM (2019) Electrospray cone-jet mode for weakly viscoelastic liquids. Phys Rev E 100(043):114 Blanco-Trejo S, Herrada MA, Gañán-Calvo AM, Montanero JM (2019) Electrospray cone-jet mode for weakly viscoelastic liquids. Phys Rev E 100(043):114
29.
go back to reference Cabezas MG, Rubio M, Rebollo-Muñoz N, Herrada MA, Montanero JM (2021) Global stability analysis of axisymmetric liquid-liquid flow focusing. J Fluid Mech 909:A10MathSciNetCrossRef Cabezas MG, Rubio M, Rebollo-Muñoz N, Herrada MA, Montanero JM (2021) Global stability analysis of axisymmetric liquid-liquid flow focusing. J Fluid Mech 909:A10MathSciNetCrossRef
30.
go back to reference López M, Cabezas MG, Montanero JM, Herrada MA (2022) On the hydrodynamic focusing for producing microemulsions via tip streaming. J Fluid Mech 934:A47MathSciNetCrossRef López M, Cabezas MG, Montanero JM, Herrada MA (2022) On the hydrodynamic focusing for producing microemulsions via tip streaming. J Fluid Mech 934:A47MathSciNetCrossRef
31.
go back to reference Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–357CrossRef Gordillo JM, Sevilla A, Campo-Cortés F (2014) Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J Fluid Mech 738:335–357CrossRef
32.
go back to reference López-Herrera J, Herrada M, Gamero-Castaño M, Gañán-Calvo AM (2020) A numerical simulation of coaxial electrosprays. J Fluid Mech 885:A15MathSciNetCrossRef López-Herrera J, Herrada M, Gamero-Castaño M, Gañán-Calvo AM (2020) A numerical simulation of coaxial electrosprays. J Fluid Mech 885:A15MathSciNetCrossRef
33.
go back to reference Montanero JM, Ponce-Torres A (2020) Review on the dynamics of isothermal liquid bridges. Appl Mech Rev 72(010):803 Montanero JM, Ponce-Torres A (2020) Review on the dynamics of isothermal liquid bridges. Appl Mech Rev 72(010):803
34.
go back to reference Beroz J, Hart AJ, Bush JM (2019) Stability limit of electrified droplets. Phys Rev Lett 122(244):501 Beroz J, Hart AJ, Bush JM (2019) Stability limit of electrified droplets. Phys Rev Lett 122(244):501
35.
go back to reference Rubio M, Rodríguez-Díaz P, López-Herrera JM, Herrada MA, Gañán-Calvo AM, Montanero JM (2023) The role of charge relaxation in electrified tip streaming. Phys Fluids 35(017):131 Rubio M, Rodríguez-Díaz P, López-Herrera JM, Herrada MA, Gañán-Calvo AM, Montanero JM (2023) The role of charge relaxation in electrified tip streaming. Phys Fluids 35(017):131
36.
go back to reference Augello L, Fani A, Gallaire F (2018) The influence of the entry region on the instability of a coflowing injector device. J Phys Condens Matter 30(284):003 Augello L, Fani A, Gallaire F (2018) The influence of the entry region on the instability of a coflowing injector device. J Phys Condens Matter 30(284):003
37.
go back to reference Tammisola O, Lundell F, Soderberg LD (2012) Surface tension-induced global instability of planar jets and wakes. J Fluid Mech 713:632–658MathSciNetCrossRef Tammisola O, Lundell F, Soderberg LD (2012) Surface tension-induced global instability of planar jets and wakes. J Fluid Mech 713:632–658MathSciNetCrossRef
38.
go back to reference Rubio M, Montanero JM, Eggers J, Herrada MA (2024) Stable production of fluid jets with vanishing diameters via tip streaming. J Flui Mech 893: A4 Rubio M, Montanero JM, Eggers J, Herrada MA (2024) Stable production of fluid jets with vanishing diameters via tip streaming. J Flui Mech 893: A4
40.
go back to reference de Luca L, Costa M, Caramiello C (2002) Energy growth of initial perturbations in two-dimensional gravitational jets. Phys Fluids 14:289–299MathSciNetCrossRef de Luca L, Costa M, Caramiello C (2002) Energy growth of initial perturbations in two-dimensional gravitational jets. Phys Fluids 14:289–299MathSciNetCrossRef
41.
go back to reference Hwang H, Moin P, Hack MJP (2021) A mechanism for the amplification of interface distortions on liquid. J Fluid Mech 911:A51MathSciNetCrossRef Hwang H, Moin P, Hack MJP (2021) A mechanism for the amplification of interface distortions on liquid. J Fluid Mech 911:A51MathSciNetCrossRef
42.
go back to reference Danaila I, Dusek J, Anselmet F (1998) Nonlinear dynamics at a Hopf bifurcation with axisymmetry breaking in a jet. Phys Rev E 57:R3695–R3698CrossRef Danaila I, Dusek J, Anselmet F (1998) Nonlinear dynamics at a Hopf bifurcation with axisymmetry breaking in a jet. Phys Rev E 57:R3695–R3698CrossRef
43.
go back to reference Sauter US, Buggisch HW (2005) Stability of initially slow viscous jets driven by gravity. J Fluid Mech 533:237–257MathSciNetCrossRef Sauter US, Buggisch HW (2005) Stability of initially slow viscous jets driven by gravity. J Fluid Mech 533:237–257MathSciNetCrossRef
44.
go back to reference Rubio-Rubio M, Sevilla A, Gordillo JM (2013) On the thinnest steady threads obtained by gravitational stretching of capillary jets. J Fluid Mech 729:471–483CrossRef Rubio-Rubio M, Sevilla A, Gordillo JM (2013) On the thinnest steady threads obtained by gravitational stretching of capillary jets. J Fluid Mech 729:471–483CrossRef
45.
go back to reference Martínez-Calvo A, Rubio-Rubio M, Sevilla A (2018) The nonlinear states of viscous capillary jets confined in the axial direction. J Fluid Mech 834:335–358CrossRef Martínez-Calvo A, Rubio-Rubio M, Sevilla A (2018) The nonlinear states of viscous capillary jets confined in the axial direction. J Fluid Mech 834:335–358CrossRef
46.
go back to reference Schmidt S, Tammisola O, Lesshafft L, Oberleithner K (2021) Global stability and nonlinear dynamics of wake flows with a two-fluid interface. J Fluid Mech 919:A96MathSciNetCrossRef Schmidt S, Tammisola O, Lesshafft L, Oberleithner K (2021) Global stability and nonlinear dynamics of wake flows with a two-fluid interface. J Fluid Mech 919:A96MathSciNetCrossRef
47.
go back to reference Javadi A, Eggers J, Bonn D, Habibi M, Ribe NM (2013) Delayed capillary breakup of falling viscous jets. Phys Rev Lett 110(144):501 Javadi A, Eggers J, Bonn D, Habibi M, Ribe NM (2013) Delayed capillary breakup of falling viscous jets. Phys Rev Lett 110(144):501
48.
go back to reference Huerre P, Monkewitz PA (1990) Local and global instabilites in spatially developing flows. Annu Rev Fluid Mech 22:473–537CrossRef Huerre P, Monkewitz PA (1990) Local and global instabilites in spatially developing flows. Annu Rev Fluid Mech 22:473–537CrossRef
49.
go back to reference Lin SP (2003) Breakup of liquid sheets and jets. Cambridge University Press, New YorkCrossRef Lin SP (2003) Breakup of liquid sheets and jets. Cambridge University Press, New YorkCrossRef
50.
go back to reference Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99(104):502 Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99(104):502
51.
go back to reference Gañán-Calvo AM, Herrada MA, Garstecki P (2006) Bubbling in unbounded coflowing liquids. Phys Rev Lett 96(124):504 Gañán-Calvo AM, Herrada MA, Garstecki P (2006) Bubbling in unbounded coflowing liquids. Phys Rev Lett 96(124):504
52.
go back to reference de Luca L (1999) Experimental investigation of the global instability of plane sheet flows. J Fluid Mech 399:355–376CrossRef de Luca L (1999) Experimental investigation of the global instability of plane sheet flows. J Fluid Mech 399:355–376CrossRef
53.
go back to reference Dizes SL (1997) Global modes in falling capillary jets. Eur J Mech B/Fluids 16:761–778MathSciNet Dizes SL (1997) Global modes in falling capillary jets. Eur J Mech B/Fluids 16:761–778MathSciNet
54.
go back to reference Si T, Li F, Yin XY, Yin XZ (2009) Modes in flow focusing and instability of coaxial liquid-gas jets. J Fluid Mech 629:1–23CrossRef Si T, Li F, Yin XY, Yin XZ (2009) Modes in flow focusing and instability of coaxial liquid-gas jets. J Fluid Mech 629:1–23CrossRef
55.
go back to reference Vega EJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2010) Global and local instability of flow focusing: the influence of the geometry. Phys Fluids 22(064):105 Vega EJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2010) Global and local instability of flow focusing: the influence of the geometry. Phys Fluids 22(064):105
56.
go back to reference Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, CambridgeCrossRef Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, CambridgeCrossRef
57.
go back to reference Montanero JM, Gañán-Calvo AM (2008) Stability of coflowing capillary jets under non-axisymmetric perturbations. Phys Rev E 77(046):301 Montanero JM, Gañán-Calvo AM (2008) Stability of coflowing capillary jets under non-axisymmetric perturbations. Phys Rev E 77(046):301
58.
go back to reference van Saarloos W (1987) Dynamical velocity selection: marginal stability. Phys Rev Lett 58:2571–2574CrossRef van Saarloos W (1987) Dynamical velocity selection: marginal stability. Phys Rev Lett 58:2571–2574CrossRef
59.
go back to reference Montanero JM, Gañán-Calvo AM (2008) Viscoelastic effects on the jetting-dripping transition in co-flowing capillary jets. J Fluid Mech 610:249–260MathSciNetCrossRef Montanero JM, Gañán-Calvo AM (2008) Viscoelastic effects on the jetting-dripping transition in co-flowing capillary jets. J Fluid Mech 610:249–260MathSciNetCrossRef
60.
go back to reference Cabezas MG, Herrada MA, Montanero JM (2019) Stability of a jet moving in a rectangular microchannel. Phys Rev E 100(053):104MathSciNet Cabezas MG, Herrada MA, Montanero JM (2019) Stability of a jet moving in a rectangular microchannel. Phys Rev E 100(053):104MathSciNet
61.
go back to reference Montanero JM, Gañán-Calvo AM (2020) Dripping, jetting and tip streaming. Rep Prog Phys 83(097):001MathSciNet Montanero JM, Gañán-Calvo AM (2020) Dripping, jetting and tip streaming. Rep Prog Phys 83(097):001MathSciNet
62.
go back to reference Ismail AS, Yao J, Xia HH, Stark JPW (2018) Breakup length of electrified liquid jets: scaling laws and applications. Phys Rev Appl 10(064):010 Ismail AS, Yao J, Xia HH, Stark JPW (2018) Breakup length of electrified liquid jets: scaling laws and applications. Phys Rev Appl 10(064):010
63.
go back to reference Gañán-Calvo AM, Chapman HN, Heymann M, Wiedorn MO, Knoska J, Gañán-Riesco B, López-Herrera JM, Cruz-Mazo F, Herrada MA, Montanero JM, Bajt S (2021) The natural breakup length of a steady capillary jet: application to serial femtosecond crystallography. Crystals 11:990CrossRef Gañán-Calvo AM, Chapman HN, Heymann M, Wiedorn MO, Knoska J, Gañán-Riesco B, López-Herrera JM, Cruz-Mazo F, Herrada MA, Montanero JM, Bajt S (2021) The natural breakup length of a steady capillary jet: application to serial femtosecond crystallography. Crystals 11:990CrossRef
64.
go back to reference Umemura A (2016) Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity. J Fluid Mech 25:146–180MathSciNetCrossRef Umemura A (2016) Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity. J Fluid Mech 25:146–180MathSciNetCrossRef
65.
go back to reference Castro-Hernández E, Gundabala V, Fernández-Nieves A, Gordillo JM (2009) Scaling the drop size in coflow experiments. New J Phys 11(075):021 Castro-Hernández E, Gundabala V, Fernández-Nieves A, Gordillo JM (2009) Scaling the drop size in coflow experiments. New J Phys 11(075):021
66.
go back to reference Keller JB, Rubinov SI, Tu YO (1973) Spatial instability of a jet. Phys Fluids 16:2052–2055CrossRef Keller JB, Rubinov SI, Tu YO (1973) Spatial instability of a jet. Phys Fluids 16:2052–2055CrossRef
67.
go back to reference Rayleigh L (1878) On the instability of jets. Proc London Math Soc s1-10:4–13 Rayleigh L (1878) On the instability of jets. Proc London Math Soc s1-10:4–13
68.
go back to reference Tomotika S (1935) On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc R Soc Lond 150:322–337 Tomotika S (1935) On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc R Soc Lond 150:322–337
69.
go back to reference Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(036):601 Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(036):601
70.
go back to reference Hickox CE (1971) Instability due to density and viscosity stratification in an axisymmetric pipe flow. Phys Fluids 14:251–262CrossRef Hickox CE (1971) Instability due to density and viscosity stratification in an axisymmetric pipe flow. Phys Fluids 14:251–262CrossRef
71.
go back to reference Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78(016):307 Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78(016):307
72.
go back to reference Janssen PJA, Meijer HEH, Anderson PD (2012) Stability and breakup of confined threads. Phys Fluids 24(012):102 Janssen PJA, Meijer HEH, Anderson PD (2012) Stability and breakup of confined threads. Phys Fluids 24(012):102
73.
go back to reference Kashid MN, Kowalinski W, Renken A, Baldyga J, Kiwi-Minsker L (2012) Analytical method to predict two-phase flow pattern in horizontal micro-capillaries. Chem Eng Sci 74:219–232CrossRef Kashid MN, Kowalinski W, Renken A, Baldyga J, Kiwi-Minsker L (2012) Analytical method to predict two-phase flow pattern in horizontal micro-capillaries. Chem Eng Sci 74:219–232CrossRef
74.
go back to reference Sanz A, Meseguer J (1985) One-dimensional linear analysis of the compound jet. J Fluid Mech 159:55–68CrossRef Sanz A, Meseguer J (1985) One-dimensional linear analysis of the compound jet. J Fluid Mech 159:55–68CrossRef
75.
go back to reference Chauhan A, Maldarelli C, Papageorgiou DT, Rumschitzk DS (2000) Temporal instability of compound threads and jets. J Fluid Mech 420:1–25CrossRef Chauhan A, Maldarelli C, Papageorgiou DT, Rumschitzk DS (2000) Temporal instability of compound threads and jets. J Fluid Mech 420:1–25CrossRef
76.
go back to reference Lee SY, Snider C, Park K, Robinson JP (2007) Compound jet instability in a microchannel for mononuclear compound drop formation. J Micromech Microeng 17:1558CrossRef Lee SY, Snider C, Park K, Robinson JP (2007) Compound jet instability in a microchannel for mononuclear compound drop formation. J Micromech Microeng 17:1558CrossRef
77.
go back to reference Herrada MA, Montanero JM, Ferrera C, Gañán-Calvo AM (2010) Analysis of the dripping-jetting transition in compound capillary jets. J Fluid Mech 649:523–536CrossRef Herrada MA, Montanero JM, Ferrera C, Gañán-Calvo AM (2010) Analysis of the dripping-jetting transition in compound capillary jets. J Fluid Mech 649:523–536CrossRef
78.
go back to reference Gordillo JM, Pérez-Saborid M, Gañán-Calvo AM (2001) Linear stability of co-flowing liquid-gas jets. J Fluid Mech 448:23–51MathSciNetCrossRef Gordillo JM, Pérez-Saborid M, Gañán-Calvo AM (2001) Linear stability of co-flowing liquid-gas jets. J Fluid Mech 448:23–51MathSciNetCrossRef
79.
go back to reference Gañán-Calvo AM, Herrada MA, Montanero JM (2014) How does a shear boundary layer affect the stability of a capillary jet? Phys Fluids 26(061):701 Gañán-Calvo AM, Herrada MA, Montanero JM (2014) How does a shear boundary layer affect the stability of a capillary jet? Phys Fluids 26(061):701
80.
go back to reference Lasheras JC, Hopfinger EJ (2000) Liquid jet instability and atomization in a coaxial gas stream. Annu Rev Fluid Mech 32:275–308CrossRef Lasheras JC, Hopfinger EJ (2000) Liquid jet instability and atomization in a coaxial gas stream. Annu Rev Fluid Mech 32:275–308CrossRef
81.
go back to reference Gordillo JM, Pérez-Saborid M (2005) Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime. J Fluid Mech 541:1–20CrossRef Gordillo JM, Pérez-Saborid M (2005) Aerodynamic effects in the break-up of liquid jets: on the first wind-induced break-up regime. J Fluid Mech 541:1–20CrossRef
82.
go back to reference Acero AJ, Ferrera C, Montanero JM, Ga\(\tilde{\text{n}}\)án-Calvo AM, (2012) Focusing liquid microjets with nozzles. J Micromech Microeng 22(065):011 Acero AJ, Ferrera C, Montanero JM, Ga\(\tilde{\text{n}}\)án-Calvo AM, (2012) Focusing liquid microjets with nozzles. J Micromech Microeng 22(065):011
83.
go back to reference Rubio M, Sadek SH, Gañán-Calvo AM, Montanero JM (2021) Diameter and charge of the first droplet emitted in electrospray. Phys Fluids 33(032):002 Rubio M, Sadek SH, Gañán-Calvo AM, Montanero JM (2021) Diameter and charge of the first droplet emitted in electrospray. Phys Fluids 33(032):002
84.
go back to reference Herrada MA, Ferrera C, Montanero JM, Gañán-Calvo AM (2010) Absolute lateral instability in capillary coflowing jets. Phys Fluids 22(064):104 Herrada MA, Ferrera C, Montanero JM, Gañán-Calvo AM (2010) Absolute lateral instability in capillary coflowing jets. Phys Fluids 22(064):104
85.
go back to reference Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef
86.
go back to reference Saville DA (1971) Electrohydrodynamic stability: effects of charge relaxation at the interface of a liquid jet. J Fluid Mech 48:815–827CrossRef Saville DA (1971) Electrohydrodynamic stability: effects of charge relaxation at the interface of a liquid jet. J Fluid Mech 48:815–827CrossRef
89.
go back to reference Xie L, Yang L, Qin L, Fu Q (2017) Temporal instability of charged viscoelastic liquid jets under an axial electric field. Eur J Mech/Fluids 66:60–70MathSciNetCrossRef Xie L, Yang L, Qin L, Fu Q (2017) Temporal instability of charged viscoelastic liquid jets under an axial electric field. Eur J Mech/Fluids 66:60–70MathSciNetCrossRef
90.
go back to reference Carroll CP, Joo YL (2008) Axisymmetric instabilities of electrically driven viscoelastic jets. J Non-Newtonian Fluid Mech 153:130–148CrossRef Carroll CP, Joo YL (2008) Axisymmetric instabilities of electrically driven viscoelastic jets. J Non-Newtonian Fluid Mech 153:130–148CrossRef
91.
go back to reference Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201–2220 Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201–2220
92.
go back to reference Yang W, Duan H, Li C, Deng W (2014) Crossover of varicose and whipping instabilities in electrified microjets. Phys Rev Lett 112(054):501 Yang W, Duan H, Li C, Deng W (2014) Crossover of varicose and whipping instabilities in electrified microjets. Phys Rev Lett 112(054):501
93.
go back to reference Guerrero J, Rivero J, Gundabala VR, Perez-Saborid M, Fernandez-Nieves A (2014) Whipping of electrified liquid jets. Proc Natl Acad Sci 111:13,763–13,767 Guerrero J, Rivero J, Gundabala VR, Perez-Saborid M, Fernandez-Nieves A (2014) Whipping of electrified liquid jets. Proc Natl Acad Sci 111:13,763–13,767
94.
go back to reference Li F, Gañán-Calvo AM, López-Herrera JM, Yin XY, Yin XZ (2013) Absolute and convective instability of a charged viscoelastic liquid jet. J Non-Newtonian Fluid Mech 196:58–69CrossRef Li F, Gañán-Calvo AM, López-Herrera JM, Yin XY, Yin XZ (2013) Absolute and convective instability of a charged viscoelastic liquid jet. J Non-Newtonian Fluid Mech 196:58–69CrossRef
95.
go back to reference Kiselev P, Rosell-Llompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125:2433–2441CrossRef Kiselev P, Rosell-Llompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125:2433–2441CrossRef
96.
go back to reference Gañán-Calvo AM (2007) Electro-flow focusing: the high-conductivity low-viscosity limit. Phys Rev Lett 98(134):503 Gañán-Calvo AM (2007) Electro-flow focusing: the high-conductivity low-viscosity limit. Phys Rev Lett 98(134):503
97.
go back to reference Forbes TP, Sisco E (2014) Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry. Analyst 139:2982CrossRef Forbes TP, Sisco E (2014) Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry. Analyst 139:2982CrossRef
98.
go back to reference Huang Y, Bu N, Duan Y, Pan Y, Liu H, Yin Z, Xiong Y (2013) Electrohydrodynamic direct-writing. Nanoscale 5:12,007–12,017 Huang Y, Bu N, Duan Y, Pan Y, Liu H, Yin Z, Xiong Y (2013) Electrohydrodynamic direct-writing. Nanoscale 5:12,007–12,017
99.
go back to reference Jiang J, Wang X, Li W, Liu J, Liu Y, Zheng G (2018) Electrohydrodynamic direct-writing micropatterns with assisted airflow. Micromachines 9:456CrossRef Jiang J, Wang X, Li W, Liu J, Liu Y, Zheng G (2018) Electrohydrodynamic direct-writing micropatterns with assisted airflow. Micromachines 9:456CrossRef
100.
go back to reference Kwak S, Pozrikidis C (2001) Effect of surfactants on the instability of a liquid thread or annular layer. Part I: quiescent fluids. Int J Multiphase Flow 27:1–37CrossRef Kwak S, Pozrikidis C (2001) Effect of surfactants on the instability of a liquid thread or annular layer. Part I: quiescent fluids. Int J Multiphase Flow 27:1–37CrossRef
101.
go back to reference Timmermans MLE, Lister JR (2002) The effect of surfactant on the stability of a liquid thread. J Fluid Mech 459:289–306CrossRef Timmermans MLE, Lister JR (2002) The effect of surfactant on the stability of a liquid thread. J Fluid Mech 459:289–306CrossRef
102.
go back to reference Hansen S, Peters GWM, Meijer HEH (1999) The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J Fluid Mech 382:331–349CrossRef Hansen S, Peters GWM, Meijer HEH (1999) The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J Fluid Mech 382:331–349CrossRef
103.
go back to reference Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York
104.
go back to reference Middleman S (1965) Stability of a viscoelastic jet. Chem Eng Sci 20:1037–1040CrossRef Middleman S (1965) Stability of a viscoelastic jet. Chem Eng Sci 20:1037–1040CrossRef
105.
go back to reference Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Breakup of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711CrossRef Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Breakup of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711CrossRef
106.
go back to reference Brenn G, Liu Z, Durst F (2000) Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Int J Multiphase Flow 26:1621–1644CrossRef Brenn G, Liu Z, Durst F (2000) Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Int J Multiphase Flow 26:1621–1644CrossRef
107.
go back to reference Funada T, Joseph DD (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newtonian Fluid Mech 111:87–105CrossRef Funada T, Joseph DD (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newtonian Fluid Mech 111:87–105CrossRef
108.
go back to reference Ye HY, Yang LJ, Fu QF (2016) Instability of viscoelastic compound jets. Phys Fluids 28(043):101 Ye HY, Yang LJ, Fu QF (2016) Instability of viscoelastic compound jets. Phys Fluids 28(043):101
109.
go back to reference Goren S, Gottlieb M (1982) Surface-tension-driven breakup of viscoelastic liquid threads. J Fluid Mech 120:245–266MathSciNetCrossRef Goren S, Gottlieb M (1982) Surface-tension-driven breakup of viscoelastic liquid threads. J Fluid Mech 120:245–266MathSciNetCrossRef
110.
go back to reference Mohamed AS, Herrada MA, Gañán-Calvo AM, Montanero JM (2015) Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension. Phys Rev E 92(023):006MathSciNet Mohamed AS, Herrada MA, Gañán-Calvo AM, Montanero JM (2015) Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension. Phys Rev E 92(023):006MathSciNet
111.
go back to reference Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef
112.
go back to reference Ponce-Torres A, Vega EJ, Castrejón-Pita AA, Montanero JM (2017) Smooth printing of viscoelastic microfilms with a flow focusing ejector. J Non-Newtonian Fluid Mech 249:1–7MathSciNetCrossRef Ponce-Torres A, Vega EJ, Castrejón-Pita AA, Montanero JM (2017) Smooth printing of viscoelastic microfilms with a flow focusing ejector. J Non-Newtonian Fluid Mech 249:1–7MathSciNetCrossRef
113.
go back to reference Rubio A, Galindo F, Vega EJ, Montanero JM, Cabezas MG (2022) Viscoelastic transition in transonic flow focusing. Phys Rev Fluids 7(074):201 Rubio A, Galindo F, Vega EJ, Montanero JM, Cabezas MG (2022) Viscoelastic transition in transonic flow focusing. Phys Rev Fluids 7(074):201
114.
go back to reference Rubio A, Vega EJ, Gañán-Calvo AM, Montanero JM (2022) Unexpected stability of micrometer weakly viscoelastic jets. Phys Fluids 34(062):014 Rubio A, Vega EJ, Gañán-Calvo AM, Montanero JM (2022) Unexpected stability of micrometer weakly viscoelastic jets. Phys Fluids 34(062):014
115.
go back to reference Ponce-Torres A, Montanero JM, Vega EJ, Gañán-Calvo AM (2016) The production of viscoelastic capillary jets with gaseous flow focusing. J Non-Newtonian Fluid Mech 229:8–15MathSciNetCrossRef Ponce-Torres A, Montanero JM, Vega EJ, Gañán-Calvo AM (2016) The production of viscoelastic capillary jets with gaseous flow focusing. J Non-Newtonian Fluid Mech 229:8–15MathSciNetCrossRef
116.
go back to reference Gill SJ, Gavis J (1956) Tensile stress in jets of viscoelastic fluids. I. J Polym Sci 20:287–298CrossRef Gill SJ, Gavis J (1956) Tensile stress in jets of viscoelastic fluids. I. J Polym Sci 20:287–298CrossRef
117.
go back to reference Alhushaybari A, Uddin J (2020) Absolute instability of free-falling viscoelastic liquid jets with surfactants. Phys Fluids 32(013):102 Alhushaybari A, Uddin J (2020) Absolute instability of free-falling viscoelastic liquid jets with surfactants. Phys Fluids 32(013):102
118.
go back to reference He D, Wylie JJ (2021) Temporal instability of a viscoelastic liquid thread surrounded by another viscoelastic fluid in presence of insoluble surfactant and inertia. J Non-Newtonian Fluid Mech 288(104):468MathSciNet He D, Wylie JJ (2021) Temporal instability of a viscoelastic liquid thread surrounded by another viscoelastic fluid in presence of insoluble surfactant and inertia. J Non-Newtonian Fluid Mech 288(104):468MathSciNet
119.
go back to reference Li F, He D (2023) Dynamics of a surfactant-laden viscoelastic thread in the presence of surface viscosity. J Fluid Mech 966:A35MathSciNetCrossRef Li F, He D (2023) Dynamics of a surfactant-laden viscoelastic thread in the presence of surface viscosity. J Fluid Mech 966:A35MathSciNetCrossRef
Metadata
Title
Theoretical Methods
Author
José María Montanero
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52768-5_3

Premium Partners