Skip to main content
Top

2013 | OriginalPaper | Chapter

8. Grain Refinement of AISI 304 SS Induced by Multiple Laser Shock Processing Impacts

Authors : Yongkang Zhang, Jinzhong Lu, Kaiyu Luo

Published in: Laser Shock Processing of FCC Metals

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the micro-structural evolution and grain refinement process of AISI 304 SS subjected to multiple LSP impacts by means of cross-sectional optical microscopy and transmission electron microscopy observations, and reveals the plastic strain-induced grain refinement mechanism of FCC materials with very low stacking fault energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lindemann, J., Buque, C., & Appel, F. (2006). Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 54(4), 1155–1164.CrossRef Lindemann, J., Buque, C., & Appel, F. (2006). Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 54(4), 1155–1164.CrossRef
2.
go back to reference Bhattacharjee, P. P., Ray, R. K., & Tsuji, N. (2009). Cold rolling and recrystallization textures of a Ni–5 at % W alloy. Acta Materialia, 57(7), 2166–2179.CrossRef Bhattacharjee, P. P., Ray, R. K., & Tsuji, N. (2009). Cold rolling and recrystallization textures of a Ni–5 at % W alloy. Acta Materialia, 57(7), 2166–2179.CrossRef
3.
go back to reference Venugopal, T., Rao, K. P., & Murty, B. S. (2007). Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Materialia, 55(13), 4439–4445.CrossRef Venugopal, T., Rao, K. P., & Murty, B. S. (2007). Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Materialia, 55(13), 4439–4445.CrossRef
4.
go back to reference Lin, Y. M., Lu, J., Wang, L. P., Xu, T., & Xue, Q. J. (2006). Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599–5605.CrossRef Lin, Y. M., Lu, J., Wang, L. P., Xu, T., & Xue, Q. J. (2006). Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599–5605.CrossRef
5.
go back to reference Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue, 24, 1021–1036.CrossRef Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue, 24, 1021–1036.CrossRef
6.
go back to reference Meyers, M. A., Gregori, F., Kad, B. K., Schneider, M. S., Kalantar, D. H., Remington, B. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Materialia, 51(5), 1211–1228.CrossRef Meyers, M. A., Gregori, F., Kad, B. K., Schneider, M. S., Kalantar, D. H., Remington, B. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Materialia, 51(5), 1211–1228.CrossRef
7.
go back to reference Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.CrossRef Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.CrossRef
8.
go back to reference Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Applied Physics A, 72(2), 113–116.CrossRef Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Applied Physics A, 72(2), 113–116.CrossRef
9.
go back to reference Yilbas, B. S., Shuja, S. Z., Arif, A., & Gondal, M. A. (2003). Laser-shock processing of steel. Journal of Materials Processing Technology, 135(1), 6–17.CrossRef Yilbas, B. S., Shuja, S. Z., Arif, A., & Gondal, M. A. (2003). Laser-shock processing of steel. Journal of Materials Processing Technology, 135(1), 6–17.CrossRef
10.
go back to reference Srinivasan, S., Garcia, D. B., Gean, M. C., Murthy, H., & Farris, T. N. (2009). Fretting fatigue of laser shock peened Ti–6Al–4 V. Tribology International, 42(9), 1324–1329.CrossRef Srinivasan, S., Garcia, D. B., Gean, M. C., Murthy, H., & Farris, T. N. (2009). Fretting fatigue of laser shock peened Ti–6Al–4 V. Tribology International, 42(9), 1324–1329.CrossRef
11.
go back to reference Nikitin, I., & Altenberger, I. (2007). Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600 °C. Materials Science and Engineering A, 465(1–2), 176–182.CrossRef Nikitin, I., & Altenberger, I. (2007). Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600 °C. Materials Science and Engineering A, 465(1–2), 176–182.CrossRef
12.
go back to reference Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., et al. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering A, 280(2), 294–302.CrossRef Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., et al. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering A, 280(2), 294–302.CrossRef
13.
go back to reference Nikitin, I., Scholtes, B., Maier, H. J., & Altenberger, I. (2004). High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Materialia, 50(10), 1345–1350.CrossRef Nikitin, I., Scholtes, B., Maier, H. J., & Altenberger, I. (2004). High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Materialia, 50(10), 1345–1350.CrossRef
14.
go back to reference Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.CrossRef Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.CrossRef
15.
go back to reference Mordyuk, B. N., Milman, Y. V., Iefimov, M. O., Prokopenko, G. I., Silberschmidt, V. V., Danylenko, M. I., et al. (2008). Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surface and Coatings Technology, 202(19), 4875–4883.CrossRef Mordyuk, B. N., Milman, Y. V., Iefimov, M. O., Prokopenko, G. I., Silberschmidt, V. V., Danylenko, M. I., et al. (2008). Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surface and Coatings Technology, 202(19), 4875–4883.CrossRef
16.
go back to reference Masse, J. E., & Barreau, G. (1995). Surface modification by laser induced shock waves. Surface Engineering, 11, 131–142. Masse, J. E., & Barreau, G. (1995). Surface modification by laser induced shock waves. Surface Engineering, 11, 131–142.
17.
go back to reference Ding, K., & Ye, L. (2003). Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering, 19(5), 351–358.CrossRef Ding, K., & Ye, L. (2003). Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering, 19(5), 351–358.CrossRef
18.
go back to reference Chu, J. P., Rigsbee, J. M., Banas′, G., & Elsayed-Ali, H. E. (1999). Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Materials Science and Engineering A, 260, 260–268.CrossRef Chu, J. P., Rigsbee, J. M., Banas′, G., & Elsayed-Ali, H. E. (1999). Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Materials Science and Engineering A, 260, 260–268.CrossRef
19.
go back to reference Lu, J. Z., Luo, K. Y., Zhang, Y. K., Cui, C. Y., Sun, G. F., Zhou, J. Z., et al. (2010). Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 58(11), 3984–3994.CrossRef Lu, J. Z., Luo, K. Y., Zhang, Y. K., Cui, C. Y., Sun, G. F., Zhou, J. Z., et al. (2010). Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 58(11), 3984–3994.CrossRef
20.
go back to reference Tan, Y., Wu, G., Yang, J. M., & Pan, T. (2004). Laser shock peening on fatigue crack growth behavior of aluminum alloy. Fatigue and Fracture of Engineering Materials and Structures, 27(8), 649–656.CrossRef Tan, Y., Wu, G., Yang, J. M., & Pan, T. (2004). Laser shock peening on fatigue crack growth behavior of aluminum alloy. Fatigue and Fracture of Engineering Materials and Structures, 27(8), 649–656.CrossRef
21.
go back to reference Arif, A. F. M. (2003). Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. Journal of Materials Processing Technology, 136, 120–138.CrossRef Arif, A. F. M. (2003). Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. Journal of Materials Processing Technology, 136, 120–138.CrossRef
22.
go back to reference Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603–4616.CrossRef Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603–4616.CrossRef
23.
go back to reference Sun, H. Q., Shi, Y. N., Zhang, M. X., & Lu, K. (2007). Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Scripta Mateialia, 55, 975–982. Sun, H. Q., Shi, Y. N., Zhang, M. X., & Lu, K. (2007). Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Scripta Mateialia, 55, 975–982.
24.
go back to reference Wen, M., Liu, G., Gu, J. F., Guan, W. M., & Lu, J. (2009). Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science, 255(12), 6097–6102.CrossRef Wen, M., Liu, G., Gu, J. F., Guan, W. M., & Lu, J. (2009). Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science, 255(12), 6097–6102.CrossRef
25.
go back to reference Tao, N. R., & Lu, K. (2009). Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Materialia, 60(12), 1039–1043.CrossRef Tao, N. R., & Lu, K. (2009). Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Materialia, 60(12), 1039–1043.CrossRef
26.
go back to reference Wu, X., Tao, N., Hong, Y., Liu, G., Xu, B., Lu, J., et al. (2005). Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia, 53(3), 681–691.CrossRef Wu, X., Tao, N., Hong, Y., Liu, G., Xu, B., Lu, J., et al. (2005). Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia, 53(3), 681–691.CrossRef
27.
go back to reference Zhang, H. W., Hei, Z. K., Liu, G., Lu, J., & Lu, K. (2003). Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51(7), 1871–1881.CrossRef Zhang, H. W., Hei, Z. K., Liu, G., Lu, J., & Lu, K. (2003). Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51(7), 1871–1881.CrossRef
28.
go back to reference Eddahbi, M., Del Valle, J. A., P’erez-Prado, M. T., & Ruano, O. A. (2005). Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering A, 410–411, 308–311.CrossRef Eddahbi, M., Del Valle, J. A., P’erez-Prado, M. T., & Ruano, O. A. (2005). Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering A, 410–411, 308–311.CrossRef
29.
go back to reference Wang, Y. B., Louie, M., Cao, Y., Liao, X. Z., Li, H. J., Ringer, S. P., et al. (2010). High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 62(4), 214–217.CrossRef Wang, Y. B., Louie, M., Cao, Y., Liao, X. Z., Li, H. J., Ringer, S. P., et al. (2010). High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 62(4), 214–217.CrossRef
30.
go back to reference Wang, K., Tao, N. R., Liu, G., Lu, J., & Lu, K. (2006). Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Materialia, 54(16), 5281–5291.CrossRef Wang, K., Tao, N. R., Liu, G., Lu, J., & Lu, K. (2006). Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Materialia, 54(16), 5281–5291.CrossRef
31.
go back to reference Zhang, X. C., Zhang, Y. K., Lu, J. Z., Xuan, F. Z., Wang, Z. D., & Tu, S. D. (2010). Improvement of fatigue life of Ti-6Al-4 V alloy by laser shock peening. Materials Science and Engineering A, 527(15), 3411–3415.CrossRef Zhang, X. C., Zhang, Y. K., Lu, J. Z., Xuan, F. Z., Wang, Z. D., & Tu, S. D. (2010). Improvement of fatigue life of Ti-6Al-4 V alloy by laser shock peening. Materials Science and Engineering A, 527(15), 3411–3415.CrossRef
32.
go back to reference Belyakov, A., Tsuzaki, K., Miura, H., & Sakai, T. (2003). Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 51(3), 847–861.CrossRef Belyakov, A., Tsuzaki, K., Miura, H., & Sakai, T. (2003). Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 51(3), 847–861.CrossRef
33.
go back to reference Kuhlmann-Wilsdorf, D., & Van der Merwe, J. H. (1982). Theory of dislocation cell size in deformed metals. Materials Science and Engineering, 55, 79–83.CrossRef Kuhlmann-Wilsdorf, D., & Van der Merwe, J. H. (1982). Theory of dislocation cell size in deformed metals. Materials Science and Engineering, 55, 79–83.CrossRef
34.
go back to reference Schino, A. D., & Kenny, J. M. (2003). Grain size dependence of the fatigue behavior of a ultrafine-grained AISI 304 stainless steel. Materials Letters, 57(21), 3182–3185.CrossRef Schino, A. D., & Kenny, J. M. (2003). Grain size dependence of the fatigue behavior of a ultrafine-grained AISI 304 stainless steel. Materials Letters, 57(21), 3182–3185.CrossRef
Metadata
Title
Grain Refinement of AISI 304 SS Induced by Multiple Laser Shock Processing Impacts
Authors
Yongkang Zhang
Jinzhong Lu
Kaiyu Luo
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-35674-2_8

Premium Partners