Skip to main content
Top

2016 | OriginalPaper | Chapter

Graphene Hybrid Architectures for Chemical Sensors

Authors : Parikshit Sahatiya, Sushmee Badhulika

Published in: Graphene-based Materials in Health and Environment

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene, one atom thick allotrope of carbon, has enabled researchers to a new era of exploration due to its unique properties. Graphene is considered to be mother of all carbon materials with excellent electrical, mechanical, optical, and thermal properties that made its use for various engineering applications. Graphene and graphene hybrids have proved over the last decade to be promising material for chemical sensors. High surface-to-volume ratio coupled with high conductivity enabled graphene-based sensors to perform well with high accuracy, high sensitivity and selectivity, low detection limits and long-term stability. To further enhance the properties of graphene, graphene-based hybrids have been synthesized for its use as transducing element in various chemical sensors such as gas and biosensors. These hybrids exhibit the synergistic benefit for both the material for fabrication of efficient sensors with enhanced performance. This chapter focuses on synthesis, characterization and applications of various graphene hybrids in chemical sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRef Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRef
2.
go back to reference Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483–3507CrossRef Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483–3507CrossRef
3.
go back to reference Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257CrossRef Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257CrossRef
4.
go back to reference Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Kong BS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6):2411–2420CrossRef Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Kong BS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6):2411–2420CrossRef
5.
go back to reference Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B Chem 23(2):135–156CrossRef Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuators B Chem 23(2):135–156CrossRef
6.
go back to reference Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70(14):2856–2859CrossRef Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70(14):2856–2859CrossRef
7.
go back to reference Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(06):18–24CrossRef Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(06):18–24CrossRef
8.
go back to reference Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef
9.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SA, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SA, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
10.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRef
11.
go back to reference Neto AC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109CrossRef Neto AC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109CrossRef
12.
go back to reference Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399CrossRef Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399CrossRef
13.
go back to reference Kamat PV (2009) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527CrossRef Kamat PV (2009) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527CrossRef
14.
go back to reference Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRef Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRef
15.
go back to reference Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRef Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRef
16.
go back to reference Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRef Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRef
17.
go back to reference Kim CH, Kim BH, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7):2472–2481CrossRef Kim CH, Kim BH, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7):2472–2481CrossRef
18.
go back to reference Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967CrossRef Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967CrossRef
19.
go back to reference Lee JM, Pyun YB, Yi J, Choung JW, Park WI (2009) ZnO nanorod–graphene hybrid architectures for multifunctional conductors. J Phys Chem C 113(44):19134–19138CrossRef Lee JM, Pyun YB, Yi J, Choung JW, Park WI (2009) ZnO nanorod–graphene hybrid architectures for multifunctional conductors. J Phys Chem C 113(44):19134–19138CrossRef
20.
go back to reference Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542CrossRef Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542CrossRef
21.
go back to reference Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRef Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRef
22.
go back to reference Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRef Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRef
23.
go back to reference Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682CrossRef Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682CrossRef
24.
go back to reference Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17(35):3678–3680CrossRef Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17(35):3678–3680CrossRef
25.
go back to reference Yan L, Lin M, Zeng C, Chen Z, Zhang S, Zhao X, Guo M (2012) Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J Mater Chem 22(17):8367–8371CrossRef Yan L, Lin M, Zeng C, Chen Z, Zhang S, Zhao X, Guo M (2012) Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J Mater Chem 22(17):8367–8371CrossRef
26.
go back to reference Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23(48):6007–6018CrossRef Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23(48):6007–6018CrossRef
27.
go back to reference Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954CrossRef Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954CrossRef
28.
go back to reference Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131(47):17099–17101CrossRef Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131(47):17099–17101CrossRef
29.
go back to reference Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46(10):1766–1768CrossRef Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C (2010) Organic functionalisation of graphenes. Chem Commun 46(10):1766–1768CrossRef
30.
go back to reference He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22(17):5054–5064CrossRef He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22(17):5054–5064CrossRef
31.
go back to reference Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944CrossRef Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944CrossRef
32.
go back to reference Zhang L, Kiny VU, Peng H, Zhu J, Lobo RF, Margrave JL, Khabashesku VN (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 6(11):2055–2061CrossRef Zhang L, Kiny VU, Peng H, Zhu J, Lobo RF, Margrave JL, Khabashesku VN (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 6(11):2055–2061CrossRef
33.
go back to reference Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef
34.
go back to reference Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10):5633–5640CrossRef Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10):5633–5640CrossRef
35.
go back to reference Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48(5):1683–1685CrossRef Cao Y, Feng J, Wu P (2010) Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 48(5):1683–1685CrossRef
36.
go back to reference Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef
37.
go back to reference Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9(3):341–350CrossRef Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9(3):341–350CrossRef
38.
go back to reference Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497(1):70–75CrossRef Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497(1):70–75CrossRef
39.
go back to reference Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. J Mater Chem 21(39):15593–15599CrossRef Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. J Mater Chem 21(39):15593–15599CrossRef
40.
go back to reference Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114(4):1822–1826CrossRef Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114(4):1822–1826CrossRef
41.
go back to reference Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504CrossRef Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26(8):3500–3504CrossRef
42.
go back to reference Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470CrossRef Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470CrossRef
43.
go back to reference Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112(50):19841–19845CrossRef Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112(50):19841–19845CrossRef
44.
go back to reference Luo Z, Somers LA, Dan Y, Ly T, Kybert NJ, Mele EJ, Johnson AC (2010) Size-selective nanoparticle growth on few-layer graphene films. Nano Lett 10(3):777–781CrossRef Luo Z, Somers LA, Dan Y, Ly T, Kybert NJ, Mele EJ, Johnson AC (2010) Size-selective nanoparticle growth on few-layer graphene films. Nano Lett 10(3):777–781CrossRef
45.
go back to reference Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780CrossRef Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780CrossRef
46.
go back to reference Phan DT, Uddin AI, Chung GS (2015) A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core–shell hybrid with graphene. Sens Actuators B Chem 220:962–967CrossRef Phan DT, Uddin AI, Chung GS (2015) A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core–shell hybrid with graphene. Sens Actuators B Chem 220:962–967CrossRef
47.
go back to reference Granatier J, Lazar P, Prucek R, Šafářová K, Zbořil R, Otyepka M, Hobza P (2012) Interaction of graphene and arenes with noble metals. J Phys Chem C 116(26):14151–14162CrossRef Granatier J, Lazar P, Prucek R, Šafářová K, Zbořil R, Otyepka M, Hobza P (2012) Interaction of graphene and arenes with noble metals. J Phys Chem C 116(26):14151–14162CrossRef
48.
go back to reference Hassan HM, Abdelsayed V, Abd El Rahman SK, AbouZeid KM, Terner J, El-Shall MS, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837CrossRef Hassan HM, Abdelsayed V, Abd El Rahman SK, AbouZeid KM, Terner J, El-Shall MS, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837CrossRef
49.
go back to reference Gu H, Yang Y, Tian J, Shi G (2013) Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl Mater Interfaces 5(14):6762–6768CrossRef Gu H, Yang Y, Tian J, Shi G (2013) Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl Mater Interfaces 5(14):6762–6768CrossRef
50.
go back to reference Du C, Yao Z, Chen Y, Bai H, Li L (2014) Synthesis of metal nanoparticle@graphene hydrogel composites by substrate-enhanced electroless deposition and their application in electrochemical sensors. RSC Adv 4(18):9133–9138CrossRef Du C, Yao Z, Chen Y, Bai H, Li L (2014) Synthesis of metal nanoparticle@graphene hydrogel composites by substrate-enhanced electroless deposition and their application in electrochemical sensors. RSC Adv 4(18):9133–9138CrossRef
51.
go back to reference Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FY, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846CrossRef Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FY, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846CrossRef
52.
go back to reference Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22(8):3471–3477CrossRef Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22(8):3471–3477CrossRef
53.
go back to reference Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Sun L (2009) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132(3):944–946CrossRef Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Sun L (2009) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132(3):944–946CrossRef
54.
go back to reference Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705CrossRef Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705CrossRef
55.
go back to reference Yi J, Lee JM, Park WI (2011) Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuators B Chem 155(1):264–269CrossRef Yi J, Lee JM, Park WI (2011) Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Actuators B Chem 155(1):264–269CrossRef
56.
go back to reference Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13(5):2151–2157CrossRef Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13(5):2151–2157CrossRef
57.
go back to reference Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935CrossRef Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935CrossRef
58.
go back to reference Son DI, Kwon BW, Park DH, Seo WS, Yi Y, Angadi B, Choi WK (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7(7):465–471CrossRef Son DI, Kwon BW, Park DH, Seo WS, Yi Y, Angadi B, Choi WK (2012) Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7(7):465–471CrossRef
59.
go back to reference Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Liu Y (2010) A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22(1):103–106CrossRef Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Liu Y (2010) A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22(1):103–106CrossRef
60.
go back to reference Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23(14):1743–1749CrossRef Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23(14):1743–1749CrossRef
61.
go back to reference Li Y, Zhao N, Shi C, Liu E, He C (2012) Improve the supercapacity performance of MnO2-decorated graphene by controlling the oxidization extent of graphene. J Phys Chem C 116(48):25226–25232CrossRef Li Y, Zhao N, Shi C, Liu E, He C (2012) Improve the supercapacity performance of MnO2-decorated graphene by controlling the oxidization extent of graphene. J Phys Chem C 116(48):25226–25232CrossRef
62.
go back to reference Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833CrossRef Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833CrossRef
63.
go back to reference Feng M, Sun R, Zhan H, Chen Y (2010) Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 21(7):075601CrossRef Feng M, Sun R, Zhan H, Chen Y (2010) Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology 21(7):075601CrossRef
64.
go back to reference Sellappan R, Sun J, Galeckas A, Lindvall N, Yurgens A, Kuznetsov AY, Chakarov D (2013) Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites. Phys Chem Chem Phys 15(37):15528–15537CrossRef Sellappan R, Sun J, Galeckas A, Lindvall N, Yurgens A, Kuznetsov AY, Chakarov D (2013) Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites. Phys Chem Chem Phys 15(37):15528–15537CrossRef
65.
go back to reference Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312CrossRef Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312CrossRef
66.
go back to reference Boruah BD, Mukherjee A, Sridhar S, Misra A (2015) Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl Mater Interfaces 7(19):10606–10611CrossRef Boruah BD, Mukherjee A, Sridhar S, Misra A (2015) Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl Mater Interfaces 7(19):10606–10611CrossRef
67.
go back to reference Hwang JO, Lee DH, Kim JY, Han TH, Kim BH, Park M, Kim SO (2011) Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J Mater Chem 21(10):3432–3437CrossRef Hwang JO, Lee DH, Kim JY, Han TH, Kim BH, Park M, Kim SO (2011) Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J Mater Chem 21(10):3432–3437CrossRef
68.
go back to reference Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5(100):82481–82487CrossRef Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5(100):82481–82487CrossRef
69.
go back to reference Haridas AK, Sharma CS, Sritharan V, Rao TN (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197CrossRef Haridas AK, Sharma CS, Sritharan V, Rao TN (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197CrossRef
70.
go back to reference Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752CrossRef Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752CrossRef
71.
go back to reference Asadian E, Shahrokhian S, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens Actuators B Chem 196:582–588CrossRef Asadian E, Shahrokhian S, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens Actuators B Chem 196:582–588CrossRef
72.
go back to reference Hao Q, Wang H, Yang X, Lu L, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333CrossRef Hao Q, Wang H, Yang X, Lu L, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333CrossRef
73.
go back to reference Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi (RRL) 6(9–10):379–381CrossRef Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi (RRL) 6(9–10):379–381CrossRef
74.
go back to reference Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene–PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22(12):5478–5485CrossRef Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene–PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22(12):5478–5485CrossRef
75.
go back to reference Badhulika S, Paul RK, Terse T, Mulchandani A (2014) Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis 26(1):103–108CrossRef Badhulika S, Paul RK, Terse T, Mulchandani A (2014) Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis 26(1):103–108CrossRef
76.
go back to reference Dong Q, Wang G, Hu H, Yang J, Qian B, Ling Z, Qiu J (2013) Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J Power Sources 243:350–353CrossRef Dong Q, Wang G, Hu H, Yang J, Qian B, Ling Z, Qiu J (2013) Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J Power Sources 243:350–353CrossRef
77.
go back to reference Li Y, Li X, Tang Z, Tang Z, Yu J, Wang J (2015) Hydrogen sensing of the mixed-potential-type MnWO 4/YSZ/Pt sensor. Sens Actuators B Chem 206:176–180CrossRef Li Y, Li X, Tang Z, Tang Z, Yu J, Wang J (2015) Hydrogen sensing of the mixed-potential-type MnWO 4/YSZ/Pt sensor. Sens Actuators B Chem 206:176–180CrossRef
78.
go back to reference Kaniyoor A, Jafri RI, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3):382–386CrossRef Kaniyoor A, Jafri RI, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3):382–386CrossRef
79.
go back to reference Shafiei M, Arsat R, Yu J, Kalantar-Zadeh K, Wlodarski W, Dubin S, Kaner RB (2009) Pt/graphene nano-sheet based hydrogen gas sensor. In: IEEE sensors. IEEE, pp. 295–298 Shafiei M, Arsat R, Yu J, Kalantar-Zadeh K, Wlodarski W, Dubin S, Kaner RB (2009) Pt/graphene nano-sheet based hydrogen gas sensor. In: IEEE sensors. IEEE, pp. 295–298
80.
go back to reference Chu BH, Nicolosi J, Lo CF, Strupinski W, Pearton SJ, Ren F (2011) Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem Solid-State Lett 14(7):K43–K45CrossRef Chu BH, Nicolosi J, Lo CF, Strupinski W, Pearton SJ, Ren F (2011) Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem Solid-State Lett 14(7):K43–K45CrossRef
81.
go back to reference Tran QT, Hoa HTM, Yoo DH, Cuong TV, Hur SH, Chung JS, Kohl PA (2014) Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens Actuators B Chem 194:45–50CrossRef Tran QT, Hoa HTM, Yoo DH, Cuong TV, Hur SH, Chung JS, Kohl PA (2014) Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens Actuators B Chem 194:45–50CrossRef
82.
go back to reference Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21(16):5972–5977CrossRef Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21(16):5972–5977CrossRef
83.
go back to reference Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 109(18):8774–8778CrossRef Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 109(18):8774–8778CrossRef
84.
go back to reference Li K, Luo Y, Yu Z, Deng M, Li D, Meng Q (2009) Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem Commun 11(7):1346–1349CrossRef Li K, Luo Y, Yu Z, Deng M, Li D, Meng Q (2009) Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem Commun 11(7):1346–1349CrossRef
85.
go back to reference Zhou L, Shen F, Tian X, Wang D, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4):1564–1569CrossRef Zhou L, Shen F, Tian X, Wang D, Zhang T, Chen W (2013) Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4):1564–1569CrossRef
86.
go back to reference Jang WK, Yun J, Kim HI, Lee YS (2013) Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym Sci 291(5):1095–1103CrossRef Jang WK, Yun J, Kim HI, Lee YS (2013) Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym Sci 291(5):1095–1103CrossRef
87.
go back to reference Gross MA, Sales MJ, Soler MA, Pereira-da-Silva MA, da Silva MF, Paterno LG (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4(34):17917–17924CrossRef Gross MA, Sales MJ, Soler MA, Pereira-da-Silva MA, da Silva MF, Paterno LG (2014) Reduced graphene oxide multilayers for gas and liquid phases chemical sensing. RSC Adv 4(34):17917–17924CrossRef
88.
go back to reference Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074CrossRef Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25(5):1070–1074CrossRef
89.
go back to reference Li SJ, Xia N, Lv XL, Zhao MM, Yuan BQ, Pang H (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens Actuators B Chem 190:809–817CrossRef Li SJ, Xia N, Lv XL, Zhao MM, Yuan BQ, Pang H (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens Actuators B Chem 190:809–817CrossRef
90.
go back to reference Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7):3959–3968CrossRef Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7):3959–3968CrossRef
91.
go back to reference Jia N, Huang B, Chen L, Tan L, Yao S (2014) A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene–chitosan modified electrode. Sens Actuators B Chem 195:165–170CrossRef Jia N, Huang B, Chen L, Tan L, Yao S (2014) A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene–chitosan modified electrode. Sens Actuators B Chem 195:165–170CrossRef
92.
go back to reference Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51CrossRef Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51CrossRef
93.
go back to reference Cao S, Zhang L, Chai Y, Yuan R (2013) Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta 109:167–172CrossRef Cao S, Zhang L, Chai Y, Yuan R (2013) Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta 109:167–172CrossRef
94.
go back to reference Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene–CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60CrossRef Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene–CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60CrossRef
95.
go back to reference Su M, Zhang Y, Song X, Ge S, Yan M, Yu J, Huang J (2013) Three-dimensional nanoflower-like MnO2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay. Electrochim Acta 97:333–340CrossRef Su M, Zhang Y, Song X, Ge S, Yan M, Yu J, Huang J (2013) Three-dimensional nanoflower-like MnO2 functionalized graphene as catalytically promoted nanolabels for ultrasensitive electrochemiluminescence immunoassay. Electrochim Acta 97:333–340CrossRef
Metadata
Title
Graphene Hybrid Architectures for Chemical Sensors
Authors
Parikshit Sahatiya
Sushmee Badhulika
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-45639-3_9

Premium Partners