Skip to main content
Top

2017 | OriginalPaper | Chapter

8. Graphene-Incorporated Sol-Gel Materials for Energy Applications

Authors : Honey John, Maheswary Kavirajan Kavitha

Published in: Sol-Gel Materials for Energy, Environment and Electronic Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the last few decades, energy conversion devices and energy storage devices have been of great interest among scientists and engineers because of the fast depletion of petroleum fuels. Recently researchers are focusing on graphene-based materials for energy applications due to its high specific surface area, excellent electrical properties, high mechanical properties, and very good chemical stability. The 2D allotrope of carbon-based material is an ideal candidate for next generation energy devices. This chapter gives an overview on the recent research on graphene-incorporated sol-gel materials for energy conversion and storage applications, such as supercapacitors, solar cells, lithium-ion batteries, and fuel cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, H.-J., Jung, S.-M., Seo, J.-M., Chang, D.W., Dai, L., Baek, J.-B.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano. Energy 1(4), 534–551 (2012). doi:10.1016/j.nanoen.2012.05.001 Choi, H.-J., Jung, S.-M., Seo, J.-M., Chang, D.W., Dai, L., Baek, J.-B.: Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano. Energy 1(4), 534–551 (2012). doi:10.​1016/​j.​nanoen.​2012.​05.​001
2.
go back to reference Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant Intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)CrossRef Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant Intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)CrossRef
3.
go back to reference Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1309 (2008)CrossRef Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1309 (2008)CrossRef
4.
go back to reference Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872 CrossRef Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.​1021/​nl0731872 CrossRef
6.
go back to reference Pirruccio, G., Martín Moreno, L., Lozano, G., Gómez Rivas, J.: Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6), 4810–4817 (2013). doi:10.1021/nn4012253 CrossRef Pirruccio, G., Martín Moreno, L., Lozano, G., Gómez Rivas, J.: Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6), 4810–4817 (2013). doi:10.​1021/​nn4012253 CrossRef
7.
go back to reference Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)CrossRef
12.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
14.
go back to reference Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10), 2164–2170 (2010). doi:10.1039/c0nr00224k CrossRef Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10), 2164–2170 (2010). doi:10.​1039/​c0nr00224k CrossRef
15.
go back to reference Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011). doi:10.1021/nl2013828 CrossRef Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011). doi:10.​1021/​nl2013828 CrossRef
17.
go back to reference Wu, Z.-S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.-M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010). doi:10.1002/adfm.201001054 CrossRef Wu, Z.-S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.-M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010). doi:10.​1002/​adfm.​201001054 CrossRef
18.
go back to reference Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). doi:10.1021/nl102661q CrossRef Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). doi:10.​1021/​nl102661q CrossRef
19.
20.
go back to reference Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X.: Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)CrossRef Chen, S., Zhu, J., Wu, X., Han, Q., Wang, X.: Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)CrossRef
21.
go back to reference Hu, C.-C., Chen, W.-C., Chang, K.-H.: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151(2), A281–A290 (2004). doi:10.1149/1.1639020 CrossRef Hu, C.-C., Chen, W.-C., Chang, K.-H.: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151(2), A281–A290 (2004). doi:10.​1149/​1.​1639020 CrossRef
25.
go back to reference Xu, S., Cheng, C., Guo, W., He, Y., Huang, R., Du, S., Wang, N.: Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment. Solid State Commun. 160, 41–46 (2013). doi:10.1016/j.ssc.2013.02.009 CrossRef Xu, S., Cheng, C., Guo, W., He, Y., Huang, R., Du, S., Wang, N.: Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment. Solid State Commun. 160, 41–46 (2013). doi:10.​1016/​j.​ssc.​2013.​02.​009 CrossRef
26.
go back to reference Look, D.C., Hemsky, J.W., Sizelove, J.R.: Residual native shallow donor in ZnO. Phys. Rev. Lett. 82(12), 2552–2555 (1999)CrossRef Look, D.C., Hemsky, J.W., Sizelove, J.R.: Residual native shallow donor in ZnO. Phys. Rev. Lett. 82(12), 2552–2555 (1999)CrossRef
27.
go back to reference Gu, H., Yang, Y., Tian, J., Shi, G.: Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl. Mater. Interfaces 5(14), 6762–6768 (2013). doi:10.1021/am401738k CrossRef Gu, H., Yang, Y., Tian, J., Shi, G.: Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACS Appl. Mater. Interfaces 5(14), 6762–6768 (2013). doi:10.​1021/​am401738k CrossRef
28.
go back to reference Lee, J.M., Pyun, Y.B., Yi, J., Choung, J.W., Park, W.I.: ZnO nanorod—graphene hybrid architectures for multifunctional conductors. J. Phy. Chem. C 113(44), 19134–19138 (2009). doi:10.1021/jp9078713 CrossRef Lee, J.M., Pyun, Y.B., Yi, J., Choung, J.W., Park, W.I.: ZnO nanorod—graphene hybrid architectures for multifunctional conductors. J. Phy. Chem. C 113(44), 19134–19138 (2009). doi:10.​1021/​jp9078713 CrossRef
29.
go back to reference Nguyen, T.L., Michael, M., Mulvaney, P.: Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 26(14), 4274–4279 (2014). doi:10.1021/cm501858s CrossRef Nguyen, T.L., Michael, M., Mulvaney, P.: Synthesis of highly crystalline CdSe@ZnO nanocrystals via monolayer-by-monolayer epitaxial shell deposition. Chem. Mater. 26(14), 4274–4279 (2014). doi:10.​1021/​cm501858s CrossRef
30.
go back to reference Son, D.I., Kwon, B.W., Park, D.H., Seo, W.-S., Yi, Y., Angadi, B., Lee, C.L., Choi, W.K.: Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nano 7, 465–471 (2012)CrossRef Son, D.I., Kwon, B.W., Park, D.H., Seo, W.-S., Yi, Y., Angadi, B., Lee, C.L., Choi, W.K.: Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nano 7, 465–471 (2012)CrossRef
31.
go back to reference Tak, Y., Hong, S.J., Lee, J.S., Yong, K.: Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.1039/b904993b CrossRef Tak, Y., Hong, S.J., Lee, J.S., Yong, K.: Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19(33), 5945–5951 (2009). doi:10.​1039/​b904993b CrossRef
32.
go back to reference Tian, J., Liu, S., Li, H., Wang, L., Zhang, Y., Luo, Y., Asiri, A.M., Al-Youbi, A.O., Sun, X.: One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. RSC Adv. 2(4), 1318–1321 (2012)CrossRef Tian, J., Liu, S., Li, H., Wang, L., Zhang, Y., Luo, Y., Asiri, A.M., Al-Youbi, A.O., Sun, X.: One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. RSC Adv. 2(4), 1318–1321 (2012)CrossRef
34.
go back to reference Williams, G., Kamat, P.V.: Graphene—semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009). doi:10.1021/la900905h CrossRef Williams, G., Kamat, P.V.: Graphene—semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009). doi:10.​1021/​la900905h CrossRef
35.
go back to reference Zhu, Y., Elim, H.I., Foo, Y.L., Yu, T., Liu, Y., Ji, W., Lee, J.Y., Shen, Z., Wee, A.T.S., Thong, J.T.L., Sow, C.H.: Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv. Mater. 18(5), 587–592 (2006). doi:10.1002/adma.200501918 CrossRef Zhu, Y., Elim, H.I., Foo, Y.L., Yu, T., Liu, Y., Ji, W., Lee, J.Y., Shen, Z., Wee, A.T.S., Thong, J.T.L., Sow, C.H.: Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv. Mater. 18(5), 587–592 (2006). doi:10.​1002/​adma.​200501918 CrossRef
36.
37.
go back to reference Li, B., Cao, H.: ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21(10), 3346–3349 (2011)CrossRef Li, B., Cao, H.: ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21(10), 3346–3349 (2011)CrossRef
39.
go back to reference Wang, J., Gao, Z., Li, Z., Jiang, Z.: Green synthesis of grapheme nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184(6), 1421–1427 (2011)CrossRef Wang, J., Gao, Z., Li, Z., Jiang, Z.: Green synthesis of grapheme nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184(6), 1421–1427 (2011)CrossRef
40.
go back to reference Chen, S., Zhu, J., Wang, X.: One-step synthesis of graphene—cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 114(27), 11829–11834 (2010)CrossRef Chen, S., Zhu, J., Wang, X.: One-step synthesis of graphene—cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 114(27), 11829–11834 (2010)CrossRef
42.
go back to reference Pan, X., Yang, M.-Q., Xu, Y.-J.: Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 16(12), 5589–5599 (2014). doi:10.1039/c3cp55038a CrossRef Pan, X., Yang, M.-Q., Xu, Y.-J.: Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 16(12), 5589–5599 (2014). doi:10.​1039/​c3cp55038a CrossRef
43.
go back to reference Peining, Z., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S.: Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4(2), 581–585 (2012). doi:10.1021/am201448p CrossRef Peining, Z., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S.: Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4(2), 581–585 (2012). doi:10.​1021/​am201448p CrossRef
44.
go back to reference Shao, D., Yu, M., Sun, H., Hu, T., lian, J., Sawyer, S.: High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 5(9), 3664–3667 (2013). doi:10.1039/c3nr00369h CrossRef Shao, D., Yu, M., Sun, H., Hu, T., lian, J., Sawyer, S.: High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 5(9), 3664–3667 (2013). doi:10.​1039/​c3nr00369h CrossRef
45.
go back to reference Lightcap, I.V., Kosel, T.H., Kamat, P.V.: Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10(2), 577–583 (2010). doi:10.1021/nl9035109 CrossRef Lightcap, I.V., Kosel, T.H., Kamat, P.V.: Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10(2), 577–583 (2010). doi:10.​1021/​nl9035109 CrossRef
46.
go back to reference Jiang, B., Tian, C., Pan, Q., Jiang, Z., Wang, J.-Q., Yan, W., Fu, H.: Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed 001 facets. J. Phy. Chem. C 115(48), 23718–23725 (2011). doi:10.1021/jp207624x CrossRef Jiang, B., Tian, C., Pan, Q., Jiang, Z., Wang, J.-Q., Yan, W., Fu, H.: Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed 001 facets. J. Phy. Chem. C 115(48), 23718–23725 (2011). doi:10.​1021/​jp207624x CrossRef
47.
go back to reference Krishnamurthy, S., Kamat, P.V.: CdSe–graphene oxide light-harvesting assembly: size-dependent electron transfer and light energy conversion aspects. ChemPhysChem 15(10), 2129–2135 (2014). doi:10.1002/cphc.201301189 CrossRef Krishnamurthy, S., Kamat, P.V.: CdSe–graphene oxide light-harvesting assembly: size-dependent electron transfer and light energy conversion aspects. ChemPhysChem 15(10), 2129–2135 (2014). doi:10.​1002/​cphc.​201301189 CrossRef
48.
go back to reference Chen, L., Zhou, Y., Tu, W., Li, Z., Bao, C., Dai, H., Yu, T., Liu, J., Zou, Z.: Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale 5(8), 3481–3485 (2013). doi:10.1039/c3nr34059g CrossRef Chen, L., Zhou, Y., Tu, W., Li, Z., Bao, C., Dai, H., Yu, T., Liu, J., Zou, Z.: Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale 5(8), 3481–3485 (2013). doi:10.​1039/​c3nr34059g CrossRef
51.
52.
go back to reference Zhou, K., Zhu, Y., Yang, X., Jiang, X., Li, C.: Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2), 353–359 (2011). doi:10.1039/c0nj00623h CrossRef Zhou, K., Zhu, Y., Yang, X., Jiang, X., Li, C.: Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2), 353–359 (2011). doi:10.​1039/​c0nj00623h CrossRef
53.
go back to reference Zhan, Z., Zheng, L., Pan, Y., Sun, G., Li, L.: Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure. J. Mater. Chem. 22(6), 2589–2595 (2012)CrossRef Zhan, Z., Zheng, L., Pan, Y., Sun, G., Li, L.: Self-powered, visible-light photodetector based on thermally reduced graphene oxide-ZnO (rGO-ZnO) hybrid nanostructure. J. Mater. Chem. 22(6), 2589–2595 (2012)CrossRef
54.
go back to reference Manga, K.K., Wang, S., Jaiswal, M., Bao, Q., Loh, K.P.: High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv. Mater. 22(46), 5265–5270 (2010). doi:10.1002/adma.201002939 CrossRef Manga, K.K., Wang, S., Jaiswal, M., Bao, Q., Loh, K.P.: High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv. Mater. 22(46), 5265–5270 (2010). doi:10.​1002/​adma.​201002939 CrossRef
55.
go back to reference Azarang, M., Shuhaimi, A., Yousefi, R., Jahromi, S.P.: One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Adv. 5(28), 21888–21896 (2015). doi:10.1039/c4ra16767h CrossRef Azarang, M., Shuhaimi, A., Yousefi, R., Jahromi, S.P.: One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Adv. 5(28), 21888–21896 (2015). doi:10.​1039/​c4ra16767h CrossRef
56.
go back to reference Kusumawati, Y., Martoprawiro, M.A., Pauporté, T.: Effects of Graphene in Graphene/TiO2 Composite Films Applied to Solar Cell Photoelectrode. J. Phys. Chem. C 118(19), 9974–9981 (2014). doi:10.1021/jp502385p CrossRef Kusumawati, Y., Martoprawiro, M.A., Pauporté, T.: Effects of Graphene in Graphene/TiO2 Composite Films Applied to Solar Cell Photoelectrode. J. Phys. Chem. C 118(19), 9974–9981 (2014). doi:10.​1021/​jp502385p CrossRef
57.
go back to reference Sun, S., Gao, L., Liu, Y.: Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96(8), 083113 (2010). doi:10.1063/1.3318466 CrossRef Sun, S., Gao, L., Liu, Y.: Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96(8), 083113 (2010). doi:10.​1063/​1.​3318466 CrossRef
58.
go back to reference Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010). doi:10.1021/nn901660v CrossRef Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010). doi:10.​1021/​nn901660v CrossRef
59.
go back to reference Lim, S.P., Pandikumar, A., Huang, N.M., Lim, H.N.: Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int. J. Energy Res. 39(6), 812–824 (2015). doi:10.1002/er.3307 CrossRef Lim, S.P., Pandikumar, A., Huang, N.M., Lim, H.N.: Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int. J. Energy Res. 39(6), 812–824 (2015). doi:10.​1002/​er.​3307 CrossRef
60.
go back to reference Kim, S.-B., Park, J.-Y., Kim, C.-S., Okuyama, K., Lee, S.-E., Jang, H.-D., Kim, T.-O.: Effects of graphene in dye-sensitized solar cells based on nitrogen-doped TiO2 composite. J. Phys. Chem. C 119(29), 16552–16559 (2015). doi:10.1021/acs.jpcc.5b02309 CrossRef Kim, S.-B., Park, J.-Y., Kim, C.-S., Okuyama, K., Lee, S.-E., Jang, H.-D., Kim, T.-O.: Effects of graphene in dye-sensitized solar cells based on nitrogen-doped TiO2 composite. J. Phys. Chem. C 119(29), 16552–16559 (2015). doi:10.​1021/​acs.​jpcc.​5b02309 CrossRef
61.
go back to reference Cheng, G., Akhtar, M.S., Yang, O.B., Stadler, F.J.: Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(14), 6635–6642 (2013). doi:10.1021/am4013374 CrossRef Cheng, G., Akhtar, M.S., Yang, O.B., Stadler, F.J.: Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(14), 6635–6642 (2013). doi:10.​1021/​am4013374 CrossRef
62.
go back to reference Fan, J., Liu, S., Yu, J.: Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 22(33), 17027–17036 (2012). doi:10.1039/c2jm33104g CrossRef Fan, J., Liu, S., Yu, J.: Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 22(33), 17027–17036 (2012). doi:10.​1039/​c2jm33104g CrossRef
63.
go back to reference Zhu, P., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S.: Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4(2), 581–585 (2012). doi:10.1021/am201448p CrossRef Zhu, P., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S.: Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4(2), 581–585 (2012). doi:10.​1021/​am201448p CrossRef
64.
go back to reference Anish Madhavan, A., Kalluri, S., Chacko, D.K., Arun, T.A., Nagarajan, S., Subramanian, K.R.V., Sreekumaran Nair, A., Nair, S.V., Balakrishnan, A.: Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2(33), 13032–13037 (2012). doi:10.1039/c2ra22091a CrossRef Anish Madhavan, A., Kalluri, S., Chacko, D.K., Arun, T.A., Nagarajan, S., Subramanian, K.R.V., Sreekumaran Nair, A., Nair, S.V., Balakrishnan, A.: Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2(33), 13032–13037 (2012). doi:10.​1039/​c2ra22091a CrossRef
68.
go back to reference Ma, J., Li, C., Yu, F., Chen, J.: 3 D Single-walled carbon nanotube/graphene aerogels as Pt-free transparent counter electrodes for high efficiency dye-sensitized solar cells. ChemSusChem 7(12), 3304–3311 (2014). doi:10.1002/cssc.201403062 CrossRef Ma, J., Li, C., Yu, F., Chen, J.: 3 D Single-walled carbon nanotube/graphene aerogels as Pt-free transparent counter electrodes for high efficiency dye-sensitized solar cells. ChemSusChem 7(12), 3304–3311 (2014). doi:10.​1002/​cssc.​201403062 CrossRef
69.
go back to reference Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203–6211 (2010). doi:10.1021/nn1016428 CrossRef Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203–6211 (2010). doi:10.​1021/​nn1016428 CrossRef
70.
go back to reference Yang, H., Guai, G.H., Guo, C., Song, Q., Jiang, S.P., Wang, Y., Zhang, W., Li, C.M.: NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J. Phys. Chem. C 115(24), 12209–12215 (2011). doi:10.1021/jp201178a CrossRef Yang, H., Guai, G.H., Guo, C., Song, Q., Jiang, S.P., Wang, Y., Zhang, W., Li, C.M.: NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J. Phys. Chem. C 115(24), 12209–12215 (2011). doi:10.​1021/​jp201178a CrossRef
71.
go back to reference Khurana, G., Sahoo, S., Barik, S.K., Katiyar, R.S.: Improved photovoltaic performance of dye sensitized solar cell using ZnO–graphene nano-composites. J. Alloys Compd. 578, 257–260 (2013). doi:10.1016/j.jallcom.2013.05.080 Khurana, G., Sahoo, S., Barik, S.K., Katiyar, R.S.: Improved photovoltaic performance of dye sensitized solar cell using ZnO–graphene nano-composites. J. Alloys Compd. 578, 257–260 (2013). doi:10.​1016/​j.​jallcom.​2013.​05.​080
72.
go back to reference Listorti, A., Juarez-Perez, E.J., Frontera, C., Roiati, V., Garcia-Andrade, L., Colella, S., Rizzo, A., Ortiz, P., Mora-Sero, I.: Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1628–1637 (2015). doi:10.1021/acs.jpclett.5b00483 Listorti, A., Juarez-Perez, E.J., Frontera, C., Roiati, V., Garcia-Andrade, L., Colella, S., Rizzo, A., Ortiz, P., Mora-Sero, I.: Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1628–1637 (2015). doi:10.​1021/​acs.​jpclett.​5b00483
73.
go back to reference Zhang, L.Q., Zhang, X.W., Yin, Z.G., Jiang, Q., Liu, X., Meng, J.H., Zhao, Y.J., Wang, H.L.: Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A 3(23), 12133–12138 (2015). doi:10.1039/c5ta01898f Zhang, L.Q., Zhang, X.W., Yin, Z.G., Jiang, Q., Liu, X., Meng, J.H., Zhao, Y.J., Wang, H.L.: Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A 3(23), 12133–12138 (2015). doi:10.​1039/​c5ta01898f
74.
go back to reference Zhao, Y., Nardes, A.M., Zhu, K.: Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J. Phys. Chem. Lett. 5(3), 490–494 (2014). doi:10.1021/jz500003v Zhao, Y., Nardes, A.M., Zhu, K.: Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J. Phys. Chem. Lett. 5(3), 490–494 (2014). doi:10.​1021/​jz500003v
75.
go back to reference Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013). doi:10.1039/c3ee40810h CrossRef Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739–1743 (2013). doi:10.​1039/​c3ee40810h CrossRef
76.
go back to reference Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef
77.
go back to reference Matas Adams, A., Marin-Beloqui, J.M., Stoica, G., Palomares, E.: The influence of the mesoporous TiO2 scaffold on the performance of methyl ammonium lead iodide (MAPI) perovskite solar cells: charge injection, charge recombination and solar cell efficiency relationship. J. Mater. Chem. A 3(44), 22154–22161 (2015). doi:10.1039/c5ta06041a Matas Adams, A., Marin-Beloqui, J.M., Stoica, G., Palomares, E.: The influence of the mesoporous TiO2 scaffold on the performance of methyl ammonium lead iodide (MAPI) perovskite solar cells: charge injection, charge recombination and solar cell efficiency relationship. J. Mater. Chem. A 3(44), 22154–22161 (2015). doi:10.​1039/​c5ta06041a
78.
go back to reference Son, D.-Y., Im, J.-H., Kim, H.-S., Park, N.-G.: 11% Efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C 118(30), 16567–16573 (2014). doi:10.1021/jp412407j Son, D.-Y., Im, J.-H., Kim, H.-S., Park, N.-G.: 11% Efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C 118(30), 16567–16573 (2014). doi:10.​1021/​jp412407j
79.
go back to reference Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano. Lett. 14(2), 724–730 (2014b). doi:10.1021/nl403997a Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano. Lett. 14(2), 724–730 (2014b). doi:10.​1021/​nl403997a
80.
go back to reference Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S.: reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl.Mater. Interfaces 7(42), 23521–23526 (2015). doi:10.1021/acsami.5b06171 Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S.: reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl.Mater. Interfaces 7(42), 23521–23526 (2015). doi:10.​1021/​acsami.​5b06171
81.
go back to reference Kang, K.S., Meng, Y.S., Breger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006) Kang, K.S., Meng, Y.S., Breger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006)
82.
go back to reference Chan, C.K., Peng, H.L., Liu, G., Mcllwrath, K., Zhang, X.F., Huggins, R.A., Nat, C.Y.: High-performance lithium battery anodes using silicon nanowires. Nanotechnology 3, 31–35 (2008) Chan, C.K., Peng, H.L., Liu, G., Mcllwrath, K., Zhang, X.F., Huggins, R.A., Nat, C.Y.: High-performance lithium battery anodes using silicon nanowires. Nanotechnology 3, 31–35 (2008)
83.
go back to reference Maier, J.: Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005) Maier, J.: Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005)
84.
go back to reference Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367 (2001) Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367 (2001)
85.
go back to reference Zhou, Y.K., Cao, L., Zhang, F.B., He, B.L., Li, H.L.: Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. 150,1246–1249 (2003) Zhou, Y.K., Cao, L., Zhang, F.B., He, B.L., Li, H.L.: Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. 150,1246–1249 (2003)
86.
go back to reference Baudrin, E., Cassaignon, S., Koesch, M., Jolivet, J.P., Dupont, L., Tarascon, J.M.: Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337–342 (2007) Baudrin, E., Cassaignon, S., Koesch, M., Jolivet, J.P., Dupont, L., Tarascon, J.M.: Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337–342 (2007)
87.
go back to reference Hu, Y.S., Kienle, L., Guo, Y.G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421–1426 (2006) Hu, Y.S., Kienle, L., Guo, Y.G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421–1426 (2006)
88.
go back to reference Wang, D., Choi, D., Li, J., Yang, Z., Z., Nie, Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A., Liu, J.: Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano 3(4), 907–914 (2009) Wang, D., Choi, D., Li, J., Yang, Z., Z., Nie, Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A., Liu, J.: Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano 3(4), 907–914 (2009)
89.
go back to reference Qiu, B., Xing, M., Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852–5855 (2014) Qiu, B., Xing, M., Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852–5855 (2014)
90.
go back to reference Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T.: A high-capacity lithium- ion-storage material. Science 276, 1395–1397 (1997) Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T.: A high-capacity lithium- ion-storage material. Science 276, 1395–1397 (1997)
91.
go back to reference Liang, J., Wei, W., Zhong, D., Yang, Q., Li, L., Guo, L.: One-step in situ synthesis of sno2/graphene nanocomposites and its application as an anode material for li-ion batteries. ACS Appl. Mater. Interfaces 4(1), 454–459 (2012). doi:10.1021/am201541s Liang, J., Wei, W., Zhong, D., Yang, Q., Li, L., Guo, L.: One-step in situ synthesis of sno2/graphene nanocomposites and its application as an anode material for li-ion batteries. ACS Appl. Mater. Interfaces 4(1), 454–459 (2012). doi:10.​1021/​am201541s
93.
go back to reference Gong, C., Zhang, Y., Yao, M., Wei, Y., Li, Q., Liu, B., Liu, R., Yao, Z., Cui, T., Zou, B., Liu, B.: Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries. RSC Adv. 5(50), 39746–39751 (2015). doi:10.1039/c5ra05711f Gong, C., Zhang, Y., Yao, M., Wei, Y., Li, Q., Liu, B., Liu, R., Yao, Z., Cui, T., Zou, B., Liu, B.: Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries. RSC Adv. 5(50), 39746–39751 (2015). doi:10.​1039/​c5ra05711f
94.
go back to reference Cao, H., Zhou, X., Deng, W., Liu, Z.: A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. J. Mater. Chem. A 4(16), 6021–6028 (2016). doi:10.1039/c6ta00064a CrossRef Cao, H., Zhou, X., Deng, W., Liu, Z.: A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. J. Mater. Chem. A 4(16), 6021–6028 (2016). doi:10.​1039/​c6ta00064a CrossRef
95.
go back to reference Zhou, Y., Liu, Q., Liu, D., Xie, H., Wu, G., Huang, W., Tian, Y., He, Q., Khalil, A., Haleem, Y.A., Xiang, T., Chu, W., Zou, C., Song, L.: Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta 174, 8–14 (2015). doi:10.1016/j.electacta.2015.05.153 Zhou, Y., Liu, Q., Liu, D., Xie, H., Wu, G., Huang, W., Tian, Y., He, Q., Khalil, A., Haleem, Y.A., Xiang, T., Chu, W., Zou, C., Song, L.: Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta 174, 8–14 (2015). doi:10.​1016/​j.​electacta.​2015.​05.​153
96.
go back to reference Yoo, J.J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Mohana Reddy, A.L., Yu, J., Vajtai, R., Ajayan, P.M.: Ultrathin Planar Graphene Supercapacitors. Nano. Lett. 11(4), 1423–1427 (2011). doi:10.1021/nl200225j Yoo, J.J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Mohana Reddy, A.L., Yu, J., Vajtai, R., Ajayan, P.M.: Ultrathin Planar Graphene Supercapacitors. Nano. Lett. 11(4), 1423–1427 (2011). doi:10.​1021/​nl200225j
97.
go back to reference Du, Q., Zheng, M., Zhang, L., Wang, Y., Chen, J., Xue, L., Dai, W., Ji, G., Cao, J.: Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta 55(12), 3897–3903 (2010). doi:10.1016/j.electacta.2010.01.089 Du, Q., Zheng, M., Zhang, L., Wang, Y., Chen, J., Xue, L., Dai, W., Ji, G., Cao, J.: Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta 55(12), 3897–3903 (2010). doi:10.​1016/​j.​electacta.​2010.​01.​089
98.
go back to reference Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., Choi, J.W.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano. Lett. 11(6), 2472–2477 (2011). doi:10.1021/nl2009058 Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., Choi, J.W.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano. Lett. 11(6), 2472–2477 (2011). doi:10.​1021/​nl2009058
99.
go back to reference Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723–3728 (2010). doi:10.1002/adma.201001029 Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723–3728 (2010). doi:10.​1002/​adma.​201001029
100.
go back to reference Guo, C.X., Li, C.M.: A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ Sci 4(11), 4504–4507 (2011). doi:10.1039/c1ee01676h Guo, C.X., Li, C.M.: A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ Sci 4(11), 4504–4507 (2011). doi:10.​1039/​c1ee01676h
101.
go back to reference Alvi, F., Ram, M.K., Basnayaka, P.A., Stefanakos, E., Goswami, Y., Kumar, A.: Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochimica Acta 56(25), 9406–9412 (2011). doi:10.1016/j.electacta.2011.08.024 Alvi, F., Ram, M.K., Basnayaka, P.A., Stefanakos, E., Goswami, Y., Kumar, A.: Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochimica Acta 56(25), 9406–9412 (2011). doi:10.​1016/​j.​electacta.​2011.​08.​024
102.
go back to reference Xia, X., Tu, J., Mai, Y., Chen, R., Wang, X., Gu, C., Zhao, X.: Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17(39), 10898–10905 (2011) doi:10.1002/chem.201100727 Xia, X., Tu, J., Mai, Y., Chen, R., Wang, X., Gu, C., Zhao, X.: Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17(39), 10898–10905 (2011) doi:10.​1002/​chem.​201100727
103.
go back to reference Qu, Q., Yang, S., Feng, X.: 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580. (2011) doi:10.1002/adma.201103042 Qu, Q., Yang, S., Feng, X.: 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580. (2011) doi:10.​1002/​adma.​201103042
104.
go back to reference Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z.: Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z.: Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef
Metadata
Title
Graphene-Incorporated Sol-Gel Materials for Energy Applications
Authors
Honey John
Maheswary Kavirajan Kavitha
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50144-4_8

Premium Partners