Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015

Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing

Authors: F. Akbar, M. Kolahdouz, Sh. Larimian, B. Radfar, H. H. Radamson

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, Top–down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21(19), 6800 (2011) V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, Top–down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21(19), 6800 (2011)
2.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004) K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
3.
go back to reference K.W.C. Lai, C.K.M. Fung, H. Chen, R. Yang, B. Song, N. Xi, Fabrication of graphene devices for infrared detection. IEEE Nanotechnology Materials and Devices Conference, pp. 14–17 (2010) K.W.C. Lai, C.K.M. Fung, H. Chen, R. Yang, B. Song, N. Xi, Fabrication of graphene devices for infrared detection. IEEE Nanotechnology Materials and Devices Conference, pp. 14–17 (2010)
4.
go back to reference G. Liu, A.A. Balandin, Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 10(4), 865–870 (2011) G. Liu, A.A. Balandin, Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 10(4), 865–870 (2011)
5.
go back to reference C. Baatar, Promises of graphene nanoelectronics, in Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008, vol. 3, p. 190 C. Baatar, Promises of graphene nanoelectronics, in Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008, vol. 3, p. 190
6.
go back to reference J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008) J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008)
7.
go back to reference K. Bolotin, K. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008) K. Bolotin, K. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)
8.
go back to reference C. Y. Sung, Graphene nanoelectronics. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, 40, 1–2 (2009) C. Y. Sung, Graphene nanoelectronics. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, 40, 1–2 (2009)
9.
go back to reference K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S.V. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005) K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S.V. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)
10.
go back to reference S. Vaziri, Fabrication and characterization of graphene field effect transistors, Master thesis at Royal Institute of Technology KTH, 2011 S. Vaziri, Fabrication and characterization of graphene field effect transistors, Master thesis at Royal Institute of Technology KTH, 2011
11.
go back to reference S. Kim, J. Ihm, H.J. Choi, Y.W. Son, Origins of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100(17), 176802 (2008) S. Kim, J. Ihm, H.J. Choi, Y.W. Son, Origins of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100(17), 176802 (2008)
12.
go back to reference F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22), 2535–2538 (2010) F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22), 2535–2538 (2010)
13.
go back to reference T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009) T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)
14.
go back to reference M.G. Ancona, Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron. Device. 57(3), 681–689 (2010) M.G. Ancona, Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron. Device. 57(3), 681–689 (2010)
15.
go back to reference G. S. Kliros, Quantum capacitance of bilayer graphene, in CAS 2010 Proceedings (international semiconductor conference), 2010(1), 69–72 G. S. Kliros, Quantum capacitance of bilayer graphene, in CAS 2010 Proceedings (international semiconductor conference), 2010(1), 69–72
16.
go back to reference G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011) G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)
17.
go back to reference G. Fiori, G. Iannaccone, On the possibility of tunable-gap bilayer graphene FET. IEEE Electron. Device Lett. 30(3), 261–264 (2009) G. Fiori, G. Iannaccone, On the possibility of tunable-gap bilayer graphene FET. IEEE Electron. Device Lett. 30(3), 261–264 (2009)
18.
go back to reference A. Avetisyan, B. Partoens, F. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81(11), 115432 (2010) A. Avetisyan, B. Partoens, F. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81(11), 115432 (2010)
20.
go back to reference G. Rutter, S. Jung, N. Klimov, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011) G. Rutter, S. Jung, N. Klimov, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)
21.
go back to reference Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009) Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)
22.
go back to reference V. Barone, O. Hod, G.E.G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006) V. Barone, O. Hod, G.E.G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)
23.
go back to reference M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007) M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)
24.
go back to reference C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, D. Jena, Quantum transport in patterned graphene nanoribbons. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, pp. 1–2, (2009) C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, D. Jena, Quantum transport in patterned graphene nanoribbons. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, pp. 1–2, (2009)
25.
go back to reference F. Xia, D.B.D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010) F. Xia, D.B.D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010)
26.
go back to reference N. Jung, N. Kim, S. Jockusch, N.J. Turro, P. Kim, L. Brus, Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9(12), 4133 (2009) N. Jung, N. Kim, S. Jockusch, N.J. Turro, P. Kim, L. Brus, Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9(12), 4133 (2009)
27.
go back to reference M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007) M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)
28.
go back to reference S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(2000), 4613–4616 (2000) S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(2000), 4613–4616 (2000)
29.
go back to reference T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Structure, stability, edge states and aromaticity of graphene ribbons. Phys. Rev. Lett. 101(9), 96402 (2008) T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Structure, stability, edge states and aromaticity of graphene ribbons. Phys. Rev. Lett. 101(9), 96402 (2008)
30.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010) F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)
31.
go back to reference M. Dragoman, D. Dragoman, A. Muller, High frequency devices based on graphene. In Semiconductor Conference, 2007. CAS 2007. International, pp. 53–56 (2007) M. Dragoman, D. Dragoman, A. Muller, High frequency devices based on graphene. In Semiconductor Conference, 2007. CAS 2007. International, pp. 53–56 (2007)
32.
go back to reference R. Shishir, D. Ferry, S. Goodnick, Intrinsic mobility limit in graphene at room temperature. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, 8, 21–24 (2009) R. Shishir, D. Ferry, S. Goodnick, Intrinsic mobility limit in graphene at room temperature. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, 8, 21–24 (2009)
33.
go back to reference Z. Tao, Y. Sheng-ke, Z. Min, Z. Yue, C. Jing, The research of preparation and catalytic property of the titanium plate which loaded with the graphene modified SnO2. Water Resour. Environ. Prot. (ISWREP) Int. Symp. 2, 1501–1503 (2011) Z. Tao, Y. Sheng-ke, Z. Min, Z. Yue, C. Jing, The research of preparation and catalytic property of the titanium plate which loaded with the graphene modified SnO2. Water Resour. Environ. Prot. (ISWREP) Int. Symp. 2, 1501–1503 (2011)
34.
go back to reference A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 36808 (2008) A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 36808 (2008)
35.
go back to reference R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon (GNR) interconnects. Electron. Device Lett. IEEE 30(6), 611–613 (2009) R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon (GNR) interconnects. Electron. Device Lett. IEEE 30(6), 611–613 (2009)
36.
go back to reference M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Influence of annealing temperature on the performance of graphene/SiC transistors with high-k/metal gate. In Ulis 2011 Ultimate Integration on Silicon International Conference on Ultimate Integration of Silicon: ULIS, 2011, 2011, pp. 1–4 M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Influence of annealing temperature on the performance of graphene/SiC transistors with high-k/metal gate. In Ulis 2011 Ultimate Integration on Silicon International Conference on Ultimate Integration of Silicon: ULIS, 2011, 2011, pp. 1–4
37.
go back to reference H. Cheng, Development of graphene-based materials for energy storage. In Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International, 2010, 3187(2010), 49 H. Cheng, Development of graphene-based materials for energy storage. In Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International, 2010, 3187(2010), 49
38.
go back to reference D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., Control of graphene’s properties by reversible hydrogenation. Science 323(5914), 610–613 (2009) D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., Control of graphene’s properties by reversible hydrogenation. Science 323(5914), 610–613 (2009)
39.
go back to reference A. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009) A. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)
40.
go back to reference Y. Yang, R. Murali, Impact of size effect on graphene nanoribbon transport. Electron. Device Lett. IEEE 31(3), 237–239 (2010) Y. Yang, R. Murali, Impact of size effect on graphene nanoribbon transport. Electron. Device Lett. IEEE 31(3), 237–239 (2010)
41.
go back to reference K. Bolotin, K. Sikes, J. Hone, H. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008) K. Bolotin, K. Sikes, J. Hone, H. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)
42.
go back to reference A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011) A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)
43.
go back to reference M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6(1), 42–60 (2011) M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6(1), 42–60 (2011)
44.
go back to reference C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008) C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)
45.
go back to reference Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5), 2689–2694 (2010) Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5), 2689–2694 (2010)
46.
go back to reference L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008) L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)
47.
go back to reference R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008) R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)
48.
go back to reference M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, Single-layer graphene cathodes for organic photovoltaics. Appl. Phys. Lett. 98(12), 123303 (2011) M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, Single-layer graphene cathodes for organic photovoltaics. Appl. Phys. Lett. 98(12), 123303 (2011)
49.
go back to reference K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25), 256405 (2009) K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25), 256405 (2009)
50.
go back to reference A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
51.
go back to reference W. Deng, W.A. Goddard, J. Che, C. Tahir, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888–6900 (2000) W. Deng, W.A. Goddard, J. Che, C. Tahir, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888–6900 (2000)
52.
go back to reference A.A.K. Geim, A.H.A. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007) A.A.K. Geim, A.H.A. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)
53.
go back to reference A. Kathalingam, V. Senthilkumar, J.-K. Rhee, Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 25(3), 1303–1308 (2014) A. Kathalingam, V. Senthilkumar, J.-K. Rhee, Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 25(3), 1303–1308 (2014)
54.
go back to reference K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005) K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)
55.
go back to reference K. Choi, A. Ali, J. Jo, Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 24(12), 4893–4900 (2013) K. Choi, A. Ali, J. Jo, Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 24(12), 4893–4900 (2013)
56.
go back to reference Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008) Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)
57.
go back to reference D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428 (2011) D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428 (2011)
58.
go back to reference X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008) X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)
59.
go back to reference V. Alzari, D. Nuvoli, S. Scognamillo, Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011) V. Alzari, D. Nuvoli, S. Scognamillo, Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)
60.
go back to reference M. Choucair, P. Thordarson, J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 2–5 (2008) M. Choucair, P. Thordarson, J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 2–5 (2008)
61.
go back to reference H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006) H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)
62.
go back to reference M. Ali-Umar, C. Yap, R. Awang, M. Hj-Jumali, M. Mat-Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. Mater. Electron. 24(4), 1282–1286 (2013) M. Ali-Umar, C. Yap, R. Awang, M. Hj-Jumali, M. Mat-Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. Mater. Electron. 24(4), 1282–1286 (2013)
63.
go back to reference S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. (NY) 45(7), 1558–1565 (2007) S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. (NY) 45(7), 1558–1565 (2007)
64.
go back to reference A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011) A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)
65.
go back to reference L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010) L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010)
66.
go back to reference L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009) L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)
67.
go back to reference D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009) D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)
68.
go back to reference D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010) D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)
69.
go back to reference K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009) K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)
70.
go back to reference C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010) C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)
71.
go back to reference P. Macháč, T. Fidler, S. Cichoň, V. Jurka, Synthesis of graphene on Co/SiC structure. J. Mater. Sci. Mater. Electron. 24(10), 3793–3799 (2013) P. Macháč, T. Fidler, S. Cichoň, V. Jurka, Synthesis of graphene on Co/SiC structure. J. Mater. Sci. Mater. Electron. 24(10), 3793–3799 (2013)
72.
go back to reference H. Huang, W. Chen, S. Chen, A.T.S. Wee, A. Thye, S. Wee, Bottom–up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12), 2513–2518 (2008) H. Huang, W. Chen, S. Chen, A.T.S. Wee, A. Thye, S. Wee, Bottom–up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12), 2513–2518 (2008)
73.
go back to reference K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature. Mater. 8(3), 203–207 (2009) K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature. Mater. 8(3), 203–207 (2009)
74.
go back to reference S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 108(9), 94321 (2010) S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 108(9), 94321 (2010)
75.
go back to reference J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10(1), 36–42 (2010) J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10(1), 36–42 (2010)
76.
go back to reference A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009) A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009)
77.
go back to reference A. Reina, X. Jia, J. Ho, D. Nezich, V. Bulovic, M.S. Dresselhaus, J. Kong, H. Son, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009) A. Reina, X. Jia, J. Ho, D. Nezich, V. Bulovic, M.S. Dresselhaus, J. Kong, H. Son, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)
78.
go back to reference K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009) K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)
79.
go back to reference Z. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon. (NY) 48(11), 3169–3174 (2010) Z. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon. (NY) 48(11), 3169–3174 (2010)
80.
go back to reference X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, W. Cai, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009) X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, W. Cai, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)
81.
go back to reference J. Sun, N. Lindvall, M. Cole, Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans. Nanotechnol. 11(2), 255–260 (2012) J. Sun, N. Lindvall, M. Cole, Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans. Nanotechnol. 11(2), 255–260 (2012)
82.
go back to reference A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. (NY) 49(13), 4204–4210 (2011) A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. (NY) 49(13), 4204–4210 (2011)
83.
go back to reference Y. S. Kim, J. H. Lee, S.-K. Jerng, E. Kim, S. Seo, J. Jung, S.-H. Chun, Y. Seung, and J. Hong, “H 2 -free synthesis of monolayer graphene with controllable grain size by plasma enhanced chemical vapor deposition,” Nanoscale, 2013 Y. S. Kim, J. H. Lee, S.-K. Jerng, E. Kim, S. Seo, J. Jung, S.-H. Chun, Y. Seung, and J. Hong, “H 2 -free synthesis of monolayer graphene with controllable grain size by plasma enhanced chemical vapor deposition,” Nanoscale, 2013
84.
go back to reference J. Fan, T. Li, Y. Gao, J. Wang, H. Ding, H. Heng, Comprehensive study of graphene grown by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 25(10), 4333–4338 (2014) J. Fan, T. Li, Y. Gao, J. Wang, H. Ding, H. Heng, Comprehensive study of graphene grown by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 25(10), 4333–4338 (2014)
85.
go back to reference C. Miao, C. Zheng, O. Liang, Y. Xie, Chemical vapor deposition of graphene. Phys. Appl. Graph. Exp. 37–54 (2011) C. Miao, C. Zheng, O. Liang, Y. Xie, Chemical vapor deposition of graphene. Phys. Appl. Graph. Exp. 37–54 (2011)
86.
go back to reference S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.L. Hsu, C. Keast, J. Schaefer, J. Kong, Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21(1), 15601 (2009) S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.L. Hsu, C. Keast, J. Schaefer, J. Kong, Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21(1), 15601 (2009)
87.
go back to reference G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010) G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010)
88.
go back to reference A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008) A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008)
89.
go back to reference L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, Y. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 1–8 (2014) L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, Y. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 1–8 (2014)
90.
go back to reference H.K. Jeong, J.D.C. Edward, G.H. Yong, L.C. Hun, Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). J. Korean Phys. Soc. 58(1), 53 (2011) H.K. Jeong, J.D.C. Edward, G.H. Yong, L.C. Hun, Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). J. Korean Phys. Soc. 58(1), 53 (2011)
91.
go back to reference J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 257(15), 6531–6534 (2011) J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 257(15), 6531–6534 (2011)
92.
go back to reference J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011) J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011)
93.
go back to reference M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009) M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)
94.
go back to reference L.L. Song, L. Ci, W. Gao, P.M.P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009) L.L. Song, L. Ci, W. Gao, P.M.P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009)
95.
go back to reference W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010) W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010)
96.
go back to reference P. Nemes-Incze, Z. Osváth, K. Kamarás, L.P. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon. (NY) 46(11), 1435–1442 (2008) P. Nemes-Incze, Z. Osváth, K. Kamarás, L.P. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon. (NY) 46(11), 1435–1442 (2008)
97.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007) J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)
98.
go back to reference C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, H. Harutyuyan, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007) C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, H. Harutyuyan, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)
99.
go back to reference A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006) A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
100.
go back to reference M. Wall, Raman spectroscopy optimizes graphene characterization. Adv. Mater. Process. 35–38 (2012) M. Wall, Raman spectroscopy optimizes graphene characterization. Adv. Mater. Process. 35–38 (2012)
101.
go back to reference A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006) A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006)
102.
go back to reference G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008) G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)
103.
go back to reference H. Iwai, Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 86(7–9), 1520–1528 (2009) H. Iwai, Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 86(7–9), 1520–1528 (2009)
104.
go back to reference B. Streetman, S. Banerjee, in Solid State Electronic Devices (Prentice Hall Series in Solid State Physical Electronics). 2007 B. Streetman, S. Banerjee, in Solid State Electronic Devices (Prentice Hall Series in Solid State Physical Electronics). 2007
106.
go back to reference Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 237, 662 (2010) Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 237, 662 (2010)
107.
go back to reference J.S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device. Lett. 30(6), 650–652 (2009) J.S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device. Lett. 30(6), 650–652 (2009)
108.
go back to reference S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009) S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)
109.
go back to reference X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008) X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)
110.
go back to reference Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.T.C. Johnson, High-On/Off-ratio graphene nanoconstriction field-effect transistor. Small 6(23), 2748–2754 (2010) Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.T.C. Johnson, High-On/Off-ratio graphene nanoconstriction field-effect transistor. Small 6(23), 2748–2754 (2010)
111.
go back to reference M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. Electron. Device. Lett. IEEE 28(4), 282–284 (2007) M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. Electron. Device. Lett. IEEE 28(4), 282–284 (2007)
112.
go back to reference S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13(4), 1435–1439 (2013) S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13(4), 1435–1439 (2013)
113.
go back to reference M.C. Lemme, T.J. Echtermeyer, M. Baus, B.N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, H. Kurz, Mobility in graphene double gate field effect transistors. Solid State Electron. 52(4), 514–518 (2008) M.C. Lemme, T.J. Echtermeyer, M. Baus, B.N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, H. Kurz, Mobility in graphene double gate field effect transistors. Solid State Electron. 52(4), 514–518 (2008)
114.
go back to reference F. Guinea, M. I. Katsnelson, A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010) F. Guinea, M. I. Katsnelson, A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010)
115.
go back to reference C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81(23), 235401 (2010) C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81(23), 235401 (2010)
116.
go back to reference X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008) X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)
117.
go back to reference M. Evaldsson, I. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 1, 1–4 (2008) M. Evaldsson, I. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 1, 1–4 (2008)
118.
go back to reference Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-Dimens Syst. Nanostruct. 40(2), 228–232 (2007) Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-Dimens Syst. Nanostruct. 40(2), 228–232 (2007)
119.
go back to reference L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature. Nano 3(7), 397–401 (2008) L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature. Nano 3(7), 397–401 (2008)
120.
go back to reference S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008) S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008)
121.
go back to reference L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene. Nano Res. 1(2), 116–122 (2008) L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene. Nano Res. 1(2), 116–122 (2008)
122.
go back to reference J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8(9), 2773–2778 (2008) J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8(9), 2773–2778 (2008)
123.
go back to reference F. Schwierz, J.J. Liou, RF transistors: recent developments and roadmap toward terahertz applications. Solid State Electron. 51(8), 1079–1091 (2007) F. Schwierz, J.J. Liou, RF transistors: recent developments and roadmap toward terahertz applications. Solid State Electron. 51(8), 1079–1091 (2007)
124.
go back to reference Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011) Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011)
125.
go back to reference L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010) L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)
126.
go back to reference L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010) L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)
127.
go back to reference J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nature. Phys. 4(5), 377–381 (2008) J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nature. Phys. 4(5), 377–381 (2008)
128.
go back to reference R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25(08), 52–57 (2000) R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25(08), 52–57 (2000)
129.
go back to reference P. Matyba, H. Yamaguchi, G. Eda, K̇.M. Chhowalla, K̇̇.L. Edman, N.D. Robinson, M. Chhowalla, L. Edman, Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4(2), 637–642 (2010) P. Matyba, H. Yamaguchi, G. Eda, K̇.M. Chhowalla, K̇̇.L. Edman, N.D. Robinson, M. Chhowalla, L. Edman, Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4(2), 637–642 (2010)
130.
go back to reference L. Jiang, X. Lu, X. Zheng, Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes. J. Mater. Sci. Mater. Electron. 25(1), 174–180 (2014) L. Jiang, X. Lu, X. Zheng, Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes. J. Mater. Sci. Mater. Electron. 25(1), 174–180 (2014)
131.
go back to reference H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999) H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)
132.
go back to reference Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68(19), 2699–2701 (1996) Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68(19), 2699–2701 (1996)
133.
go back to reference S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1404 (1999) S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1404 (1999)
134.
go back to reference I.-M. Chan, T.-Y. Hsu, F.C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81(10), 1899–1901 (2002) I.-M. Chan, T.-Y. Hsu, F.C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81(10), 1899–1901 (2002)
135.
go back to reference J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2010) J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2010)
136.
go back to reference Q. Pei, A.J. Heeger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167 (2008) Q. Pei, A.J. Heeger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167 (2008)
137.
go back to reference Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20(20), 3924–3930 (2008) Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20(20), 3924–3930 (2008)
138.
go back to reference J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92(26), 263302 (2008) J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92(26), 263302 (2008)
139.
go back to reference N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011) N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011)
140.
go back to reference V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315(5816), 1252–1255 (2007) V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315(5816), 1252–1255 (2007)
141.
go back to reference V.V. Cheianov, V.I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 41403 (2006) V.V. Cheianov, V.I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 41403 (2006)
142.
go back to reference S. Tanachutiwat, J.U. Lee, W. Wang, C.Y. Sung, Reconfigurable multi-function logic based on graphene p–n junctions. In Proceedings of the 47th Design Automation Conference on DAC 10, 2010, pp. 883–888 S. Tanachutiwat, J.U. Lee, W. Wang, C.Y. Sung, Reconfigurable multi-function logic based on graphene p–n junctions. In Proceedings of the 47th Design Automation Conference on DAC 10, 2010, pp. 883–888
143.
go back to reference P. Atanasov, A. Kaisheva, I. Iliev, V. Razumas, J. Kulys, Glucose biosensor based on carbon black strips. Biosens. Bioelectron. 7(5), 361–365 (1992) P. Atanasov, A. Kaisheva, I. Iliev, V. Razumas, J. Kulys, Glucose biosensor based on carbon black strips. Biosens. Bioelectron. 7(5), 361–365 (1992)
144.
go back to reference S. Timur, L. Della, N. Pazarlioˇ, R. Pilloton, A. Telefoncu, Screen printed graphite biosensors based on bacterial cells. Process. Biochem. 39, 1325–1329 (2004) S. Timur, L. Della, N. Pazarlioˇ, R. Pilloton, A. Telefoncu, Screen printed graphite biosensors based on bacterial cells. Process. Biochem. 39, 1325–1329 (2004)
145.
go back to reference Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004) Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)
146.
go back to reference J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004) J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)
147.
go back to reference Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 2–6 (2009) Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 2–6 (2009)
148.
go back to reference S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010) S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010)
149.
go back to reference N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469–4476 (2008) N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469–4476 (2008)
150.
go back to reference R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22(46), 5297–5300 (2010) R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22(46), 5297–5300 (2010)
151.
go back to reference X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010) X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010)
152.
go back to reference Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010) Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)
153.
go back to reference Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33(4), 1097–1106 (2012) Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33(4), 1097–1106 (2012)
154.
go back to reference Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010) Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010)
155.
go back to reference E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972) E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972)
156.
go back to reference A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011) A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)
157.
go back to reference A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012) A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012)
158.
go back to reference G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 083111(2009), 8–11 (2012) G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 083111(2009), 8–11 (2012)
159.
go back to reference H. Li, Y. Anugrah, S.J. Koester, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101(11), 111110 (2012) H. Li, Y. Anugrah, S.J. Koester, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101(11), 111110 (2012)
160.
go back to reference B. Scharf, V. Perebeinos, J. Fabian, P. Avouris, Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys. Rev. B 87(3), 35414 (2013) B. Scharf, V. Perebeinos, J. Fabian, P. Avouris, Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys. Rev. B 87(3), 35414 (2013)
161.
go back to reference N. Youngblood, C. Chen, S. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. arXiv Prepr. arXiv1409.6412, pp. 1–17, 2014 N. Youngblood, C. Chen, S. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. arXiv Prepr. arXiv1409.6412, pp. 1–17, 2014
162.
go back to reference N. Haratipour, M. Robbins, S. Koester, Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv Prepr. arXiv1409.8395, 55455, 2–4 (2014) N. Haratipour, M. Robbins, S. Koester, Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv Prepr. arXiv1409.8395, 55455, 2–4 (2014)
163.
go back to reference X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013) X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)
164.
go back to reference B. Jalali, S. Fathpour, Silicon photonics. Light. Technol. J. 24(12), 4600–4615 (2006) B. Jalali, S. Fathpour, Silicon photonics. Light. Technol. J. 24(12), 4600–4615 (2006)
165.
go back to reference Y. Vlasov, S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004) Y. Vlasov, S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)
166.
go back to reference W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R.G. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. Sel. Top. Quantum Electron. IEEE J. 12(6), 1394–1401 (2006) W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R.G. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. Sel. Top. Quantum Electron. IEEE J. 12(6), 1394–1401 (2006)
167.
go back to reference E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486–490 (2008) E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486–490 (2008)
168.
go back to reference F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009) F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009)
169.
go back to reference J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9(5), 1742–1746 (2009) J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9(5), 1742–1746 (2009)
170.
go back to reference X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2009) X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2009)
171.
go back to reference M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011) M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)
172.
go back to reference A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013) A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)
173.
go back to reference T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010) T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)
174.
go back to reference M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser et al., Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012) M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser et al., Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012)
175.
go back to reference J. Yan, M.H. Kim, J.A. Elle, A.B. Sushkov, G.S. Jenkins, H.M. Milchberg, M.S. Fuhrer, H.D. Drew, Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7(7), 472–478 (2012) J. Yan, M.H. Kim, J.A. Elle, A.B. Sushkov, G.S. Jenkins, H.M. Milchberg, M.S. Fuhrer, H.D. Drew, Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7(7), 472–478 (2012)
176.
go back to reference L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012) L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)
177.
go back to reference S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012) S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012)
178.
go back to reference A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou et al., Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011) A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou et al., Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011)
179.
go back to reference H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 24(10), 3640–3645 (2013) H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 24(10), 3640–3645 (2013)
180.
go back to reference B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci. Mater. Electron. 26, 590–600 (2015) B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci. Mater. Electron. 26, 590–600 (2015)
181.
go back to reference J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 490, 2012 (2007) J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 490, 2012 (2007)
182.
go back to reference X. Tao, Q. Hong, T. Xu, F. Liao, Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. J. Mater. Sci. Mater. Electron. 25(8), 3480–3485 (2014) X. Tao, Q. Hong, T. Xu, F. Liao, Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. J. Mater. Sci. Mater. Electron. 25(8), 3480–3485 (2014)
183.
go back to reference G. Hwang, J.J.C. Acosta, E. Vela, S. Haliyo, S. Regnier, Graphene as thin film infrared optoelectronic sensor. In International Symposium on Optomechatronic Technologies (ISOT) 2009, Istanbul, pp. 169–174 (2009) G. Hwang, J.J.C. Acosta, E. Vela, S. Haliyo, S. Regnier, Graphene as thin film infrared optoelectronic sensor. In International Symposium on Optomechatronic Technologies (ISOT) 2009, Istanbul, pp. 169–174 (2009)
184.
go back to reference V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Terahertz and infrared detectors based on graphene structures. Infrared Phys. Technol. 54(3), 302–305 (2011) V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Terahertz and infrared detectors based on graphene structures. Infrared Phys. Technol. 54(3), 302–305 (2011)
185.
go back to reference M.C. Lemme, Current status of graphene transistors. Solid State Phenom. 156–158, 499–509 (2009) M.C. Lemme, Current status of graphene transistors. Solid State Phenom. 156–158, 499–509 (2009)
186.
go back to reference A.H.C. Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009) A.H.C. Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)
Metadata
Title
Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing
Authors
F. Akbar
M. Kolahdouz
Sh. Larimian
B. Radfar
H. H. Radamson
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2725-9

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue