Skip to main content
Top
Published in: Cellulose 3/2022

19-01-2022 | Original Research

Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals

Authors: Sujithra Balasubramanian, Ponnusami Venkatachalam

Published in: Cellulose | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Levulinic acid (LA) is an important platform chemical and used for the production of various biofuels and bio-based chemicals. Formic acid (FA) is a major product of biomass conversion and sustainable biomass-derived energy source for hydrogen production. Due to the growing demand for the use of renewable sources, cellulose-containing plant wastes/lignocelluloses can act as substrates for LA and FA production. Among various cellulose conversion strategies, solid acid appears to be a promising alternative for mineral acids recently. Hitherto only harsh conditions and strong mineral acids have been used for carbon solid acid synthesis. Therefore, recyclable non-corrosive catalysts with suitable thermal and chemical stability for cellulose hydrolysis are in great demand. Methane sulfonic acid (MSA) is a green acid since it is non-oxidizing, readily biodegradable, and less toxic than mineral acids. In this work, we have explored the use of this milder acid-based carbon solid acid catalyst synthesized from inedible mahua (Madhuca longifolia) oil cake through one-step hydrothermal synthesis and examined its efficiency for LA and FA production from cellulose. The catalyst was characterized using Raman spectroscopy, FTIR, BET, XPS, TGA, and XRD analysis. A drastic change in catalyst surface area from < 1 to 319 m2/g and acid site density (0–5.77 mmol/g) was achieved by increasing synthesis temperature above 240 °C which reflected in increased cellulose conversion to LA and FA. This indicated a need for significant change in synthesis temperature while using milder acids than the conventionally used temperature of 180 °C for strong acids. The increase in synthesis time to 24 h resulted in a catalyst with a good surface area of 367 m2/g. The use of high acid concentration for catalyst synthesis (1:4, oil cake: acid ratio) destroyed porous structures leading to reduced surface area (277 m2/g) and pore volume but increased the amount of catalyst acid sites. Interestingly, the lowering of LA and FA yield for this catalyst signified the importance of surface area and acid site concentration in determining the catalyst efficiency. The catalyst achieved efficient conversion of cellulose with an LA and FA yield of 38 and 65%, respectively.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alatalo S-M, Pileidis F, Mäkilä E, Sevilla M, Repo E, Salonen J, Titirici M-M (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883PubMedCrossRef Alatalo S-M, Pileidis F, Mäkilä E, Sevilla M, Repo E, Salonen J, Titirici M-M (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883PubMedCrossRef
go back to reference Ania C, Parra J, Pis J (2002) Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process Technol 79(3):265–271CrossRef Ania C, Parra J, Pis J (2002) Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process Technol 79(3):265–271CrossRef
go back to reference Aniya V, Kumari A, De D, Vidya D, Swapna V, Thella PK, Satyavathi B (2018) Translation of lignocellulosic waste to mesoporous solid acid catalyst and its efficacy in esterification of volatile fatty acid. Microporous Mesoporous Mater 264:198–207CrossRef Aniya V, Kumari A, De D, Vidya D, Swapna V, Thella PK, Satyavathi B (2018) Translation of lignocellulosic waste to mesoporous solid acid catalyst and its efficacy in esterification of volatile fatty acid. Microporous Mesoporous Mater 264:198–207CrossRef
go back to reference Ansanay Y, Kolar P, Sharma-Shivappa R, Cheng J, Arellano C (2021) Pretreatment of switchgrass for production of glucose via sulfonic acid-impregnated activated carbon. Processes 9(3):504CrossRef Ansanay Y, Kolar P, Sharma-Shivappa R, Cheng J, Arellano C (2021) Pretreatment of switchgrass for production of glucose via sulfonic acid-impregnated activated carbon. Processes 9(3):504CrossRef
go back to reference Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350(6319):627–628CrossRef Baker SC, Kelly DP, Murrell JC (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350(6319):627–628CrossRef
go back to reference Boonyakarn T, Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Sasaki M, Laosiripojana N, Shotipruk A (2019) Enhanced levulinic acid production from cellulose by combined Brønsted hydrothermal carbon and Lewis acid catalysts. Ind Eng Chem Res 58(8):2697–2703CrossRef Boonyakarn T, Wataniyakul P, Boonnoun P, Quitain AT, Kida T, Sasaki M, Laosiripojana N, Shotipruk A (2019) Enhanced levulinic acid production from cellulose by combined Brønsted hydrothermal carbon and Lewis acid catalysts. Ind Eng Chem Res 58(8):2697–2703CrossRef
go back to reference Braida WJ, Pignatello JJ, Lu Y, Ravikovitch PI, Neimark AV, Xing B (2003) Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol 37(2):409–417PubMedCrossRef Braida WJ, Pignatello JJ, Lu Y, Ravikovitch PI, Neimark AV, Xing B (2003) Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol 37(2):409–417PubMedCrossRef
go back to reference Capon B (1963) Intramolecular catalysis in glucoside hydrolysis. Tetrahedron Lett 4(14):911–913CrossRef Capon B (1963) Intramolecular catalysis in glucoside hydrolysis. Tetrahedron Lett 4(14):911–913CrossRef
go back to reference Chen G, Fang B (2011) Preparation of solid acid catalyst from glucose–starch mixture for biodiesel production. Biores Technol 102(3):2635–2640CrossRef Chen G, Fang B (2011) Preparation of solid acid catalyst from glucose–starch mixture for biodiesel production. Biores Technol 102(3):2635–2640CrossRef
go back to reference Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2–SiO2–Sm2O3. Biores Technol 102(3):3568–3570CrossRef Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2–SiO2–Sm2O3. Biores Technol 102(3):3568–3570CrossRef
go back to reference Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310CrossRef Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310CrossRef
go back to reference Coates J (2000) Interpretation of infrared spectra, a practical approach. Citeseer Coates J (2000) Interpretation of infrared spectra, a practical approach. Citeseer
go back to reference Desimoni E, Brunetti B (2015) X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3(2):70–117CrossRef Desimoni E, Brunetti B (2015) X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: a review. Chemosensors 3(2):70–117CrossRef
go back to reference Díaz-Urrutia C, Ott T (2019) Activation of methane: a selective industrial route to methanesulfonic acid. Science 363(6433):1326–1329PubMedCrossRef Díaz-Urrutia C, Ott T (2019) Activation of methane: a selective industrial route to methanesulfonic acid. Science 363(6433):1326–1329PubMedCrossRef
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57CrossRef
go back to reference Flores KP, Omega JLO, Cabatingan LK, Go AW, Agapay RC, Ju Y-H (2019) Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew Energy 130:510–523CrossRef Flores KP, Omega JLO, Cabatingan LK, Go AW, Agapay RC, Ju Y-H (2019) Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew Energy 130:510–523CrossRef
go back to reference Foo GS, Van Pelt AH, Krötschel D, Sauk BF, Rogers AK, Jolly CR, Yung MM, Sievers C (2015) Hydrolysis of cellobiose over selective and stable sulfonated activated carbon catalysts. ACS Sustain Chem Eng 3(9):1934–1942CrossRef Foo GS, Van Pelt AH, Krötschel D, Sauk BF, Rogers AK, Jolly CR, Yung MM, Sievers C (2015) Hydrolysis of cellobiose over selective and stable sulfonated activated carbon catalysts. ACS Sustain Chem Eng 3(9):1934–1942CrossRef
go back to reference Forzatti P, Lietti L (1999) Catalyst Deactivation. Catal Today 52(2–3):165–181 Forzatti P, Lietti L (1999) Catalyst Deactivation. Catal Today 52(2–3):165–181
go back to reference Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135(11):4398–4402PubMedCrossRef Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135(11):4398–4402PubMedCrossRef
go back to reference Geng L, Yu G, Wang Y, Zhu Y (2012) Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid. Appl Catal A 427:137–144CrossRef Geng L, Yu G, Wang Y, Zhu Y (2012) Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid. Appl Catal A 427:137–144CrossRef
go back to reference Gong R, Ma Z, Wang X, Han Y, Guo Y, Sun G, Li Y, Zhou J (2019) Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Adv 9(50):28902–28907CrossRef Gong R, Ma Z, Wang X, Han Y, Guo Y, Sun G, Li Y, Zhou J (2019) Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Adv 9(50):28902–28907CrossRef
go back to reference Guzmán I, Heras A, Guemez MB, Iriondo A, Cambra JF, Requies J (2016) Levulinic acid production using solid-acid catalysis. Ind Eng Chem Res 55(18):5139–5144CrossRef Guzmán I, Heras A, Guemez MB, Iriondo A, Cambra JF, Requies J (2016) Levulinic acid production using solid-acid catalysis. Ind Eng Chem Res 55(18):5139–5144CrossRef
go back to reference Hara M (2010) Biomass conversion by a solid acid catalyst. Energy Environ Sci 3(5):601–607CrossRef Hara M (2010) Biomass conversion by a solid acid catalyst. Energy Environ Sci 3(5):601–607CrossRef
go back to reference Hu L, Tang X, Wu Z, Lin L, Xu J, Xu N, Dai B (2015) Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem Eng J 263:299–308CrossRef Hu L, Tang X, Wu Z, Lin L, Xu J, Xu N, Dai B (2015) Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem Eng J 263:299–308CrossRef
go back to reference Ibrahim SF, Asikin-Mijan N, Ibrahim ML, Abdulkareem-Alsultan G, Izham SM, Taufiq-Yap Y (2020) Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manag 210:112698CrossRef Ibrahim SF, Asikin-Mijan N, Ibrahim ML, Abdulkareem-Alsultan G, Izham SM, Taufiq-Yap Y (2020) Sulfonated functionalization of carbon derived corncob residue via hydrothermal synthesis route for esterification of palm fatty acid distillate. Energy Convers Manag 210:112698CrossRef
go back to reference Iguchi M, Onishi N, Himeda Y, Kawanami H (2019) Ligand effect on the stability of water-soluble iridium catalysts for high-pressure hydrogen gas production by dehydrogenation of formic acid. ChemPhysChem 20(10):1296–1300PubMedCrossRef Iguchi M, Onishi N, Himeda Y, Kawanami H (2019) Ligand effect on the stability of water-soluble iridium catalysts for high-pressure hydrogen gas production by dehydrogenation of formic acid. ChemPhysChem 20(10):1296–1300PubMedCrossRef
go back to reference Kitano M, Arai K, Kodama A, Kousaka T, Nakajima K, Hayashi S, Hara M (2009) Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal Lett 131(1):242–249CrossRef Kitano M, Arai K, Kodama A, Kousaka T, Nakajima K, Hayashi S, Hara M (2009) Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal Lett 131(1):242–249CrossRef
go back to reference Konwar LJ (2016) New biomass derived carbon catalysts for biomass valorization Konwar LJ (2016) New biomass derived carbon catalysts for biomass valorization
go back to reference Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev 29:546–564CrossRef Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev 29:546–564CrossRef
go back to reference Konwar LJ, Das R, Thakur AJ, Salminen E, Mäki-Arvela P, Kumar N, Mikkola JP, Deka D (2014) Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J Mol Catal A Chem 388:167–176CrossRef Konwar LJ, Das R, Thakur AJ, Salminen E, Mäki-Arvela P, Kumar N, Mikkola JP, Deka D (2014) Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J Mol Catal A Chem 388:167–176CrossRef
go back to reference Kumar VB, Pulidindi IN, Gedanken A (2015) Selective conversion of starch to glucose using carbon based solid acid catalyst. Renew Energy 78:141–145CrossRef Kumar VB, Pulidindi IN, Gedanken A (2015) Selective conversion of starch to glucose using carbon based solid acid catalyst. Renew Energy 78:141–145CrossRef
go back to reference Ma H, Li J, Liu W, Cheng B, Cao X, Mao J, Zhu S (2014) Hydrothermal preparation and characterization of novel corncob-derived solid acid catalysts. J Agric Food Chem 62(23):5345–5353PubMedCrossRef Ma H, Li J, Liu W, Cheng B, Cao X, Mao J, Zhu S (2014) Hydrothermal preparation and characterization of novel corncob-derived solid acid catalysts. J Agric Food Chem 62(23):5345–5353PubMedCrossRef
go back to reference Malins K, Brinks J, Kampars V, Malina I (2016) Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl Catal A 519:99–106CrossRef Malins K, Brinks J, Kampars V, Malina I (2016) Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Appl Catal A 519:99–106CrossRef
go back to reference Mardhiah HH, Ong HC, Masjuki H, Lim S, Pang YL (2017) Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers Manag 144:10–17CrossRef Mardhiah HH, Ong HC, Masjuki H, Lim S, Pang YL (2017) Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Convers Manag 144:10–17CrossRef
go back to reference Meramo Hurtado SI, Puello P, Cabarcas A (2021) Technical evaluation of a levulinic acid plant based on biomass transformation under techno-economic and exergy analyses. ACS Omega 6(8):5627–5641PubMedPubMedCentralCrossRef Meramo Hurtado SI, Puello P, Cabarcas A (2021) Technical evaluation of a levulinic acid plant based on biomass transformation under techno-economic and exergy analyses. ACS Omega 6(8):5627–5641PubMedPubMedCentralCrossRef
go back to reference Mukherjee A, Dumont MJ (2016) Levulinic acid production from starch using microwave and oil bath heating: a kinetic modeling approach. Ind Eng Chem Res 55(33):8941–8949CrossRef Mukherjee A, Dumont MJ (2016) Levulinic acid production from starch using microwave and oil bath heating: a kinetic modeling approach. Ind Eng Chem Res 55(33):8941–8949CrossRef
go back to reference Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2(7):1296–1304CrossRef Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal 2(7):1296–1304CrossRef
go back to reference Namchot W, Panyacharay N, Jonglertjunya W, Sakdaronnarong C (2014) Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts. Fuel 116:608–616CrossRef Namchot W, Panyacharay N, Jonglertjunya W, Sakdaronnarong C (2014) Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts. Fuel 116:608–616CrossRef
go back to reference Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045CrossRef Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18(13):3039–3045CrossRef
go back to reference Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44 Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44
go back to reference Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5(3):2421–2427CrossRef Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5(3):2421–2427CrossRef
go back to reference Shrotri A, Kobayashi H, Fukuoka A (2016) Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose. Chemsuschem 9(11):1299–1303PubMedCrossRef Shrotri A, Kobayashi H, Fukuoka A (2016) Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose. Chemsuschem 9(11):1299–1303PubMedCrossRef
go back to reference Shu Q, Nawaz Z, Gao J, Liao Y, Zhang Q, Wang D, Wang J (2010) Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation. Biores Technol 101(14):5374–5384CrossRef Shu Q, Nawaz Z, Gao J, Liao Y, Zhang Q, Wang D, Wang J (2010) Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation. Biores Technol 101(14):5374–5384CrossRef
go back to reference Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5(5):6889–6894CrossRef Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5(5):6889–6894CrossRef
go back to reference Song X-L, Fu X-B, Zhang C-W, Huang W-Y, Zhu Y, Yang J, Zhang Y-M (2012) Preparation of a novel carbon based solid acid catalyst for biodiesel production via a sustainable route. Catal Lett 142(7):869–874CrossRef Song X-L, Fu X-B, Zhang C-W, Huang W-Y, Zhu Y, Yang J, Zhang Y-M (2012) Preparation of a novel carbon based solid acid catalyst for biodiesel production via a sustainable route. Catal Lett 142(7):869–874CrossRef
go back to reference Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793PubMedCrossRef Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793PubMedCrossRef
go back to reference Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12(6):1029–1034CrossRef Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12(6):1029–1034CrossRef
go back to reference Szabolcs Á, Molnár M, Dibó G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15(2):439–445CrossRef Szabolcs Á, Molnár M, Dibó G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15(2):439–445CrossRef
go back to reference Van Dam H, Kieboom A, Van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch Stärke 38(3):95–101CrossRef Van Dam H, Kieboom A, Van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch Stärke 38(3):95–101CrossRef
go back to reference Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly (arylene oxindole) s. Energy Environ Sci 4(9):3601–3610CrossRef Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly (arylene oxindole) s. Energy Environ Sci 4(9):3601–3610CrossRef
go back to reference Volli V, Singh R (2012) Production of bio-oil from mahua de-oiled cake by thermal pyrolysis. J Renew Sustain Energy 4(1):013101CrossRef Volli V, Singh R (2012) Production of bio-oil from mahua de-oiled cake by thermal pyrolysis. J Renew Sustain Energy 4(1):013101CrossRef
go back to reference Wang P, Zhan SH, Yu HB (2010) Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Paper presented at the Advanced Materials Research Wang P, Zhan SH, Yu HB (2010) Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Paper presented at the Advanced Materials Research
go back to reference Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574CrossRef Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5(6):7559–7574CrossRef
go back to reference Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113(8):3181–3188CrossRef Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113(8):3181–3188CrossRef
go back to reference Yan L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4(45):23492–23504CrossRef Yan L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4(45):23492–23504CrossRef
go back to reference Yang H, Wang L, Jia L, Qiu C, Pang Q, Pan X (2014) Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions. Ind Eng Chem Res 53(15):6562–6568CrossRef Yang H, Wang L, Jia L, Qiu C, Pang Q, Pan X (2014) Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions. Ind Eng Chem Res 53(15):6562–6568CrossRef
go back to reference Yu H, Niu S, Lu C, Li J, Yang Y (2016) Preparation and esterification performance of sulfonated coal-based heterogeneous acid catalyst for methyl oleate production. Energy Convers Manag 126:488–496CrossRef Yu H, Niu S, Lu C, Li J, Yang Y (2016) Preparation and esterification performance of sulfonated coal-based heterogeneous acid catalyst for methyl oleate production. Energy Convers Manag 126:488–496CrossRef
go back to reference Zeng D, Zhang Q, Chen S, Liu S, Wang G (2016) Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater 219:54–58CrossRef Zeng D, Zhang Q, Chen S, Liu S, Wang G (2016) Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater 219:54–58CrossRef
go back to reference Zhang B, Ren J, Liu X, Guo Y, Guo Y, Lu G, Wang Y (2010) Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catal Commun 11(7):629–632CrossRef Zhang B, Ren J, Liu X, Guo Y, Guo Y, Lu G, Wang Y (2010) Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catal Commun 11(7):629–632CrossRef
go back to reference Zhou Y, Niu S, Li J (2016) Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers Manag 114:188–196CrossRef Zhou Y, Niu S, Li J (2016) Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers Manag 114:188–196CrossRef
go back to reference Zhu S, Xu J, Cheng Z, Kuang Y, Wu Q, Wang B, Gao W, Zeng J, Li J, Chen K (2020) Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B Environ 268:118732CrossRef Zhu S, Xu J, Cheng Z, Kuang Y, Wu Q, Wang B, Gao W, Zeng J, Li J, Chen K (2020) Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B Environ 268:118732CrossRef
go back to reference Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–437CrossRef Zong M-H, Duan Z-Q, Lou W-Y, Smith TJ, Wu H (2007) Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem 9(5):434–437CrossRef
Metadata
Title
Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals
Authors
Sujithra Balasubramanian
Ponnusami Venkatachalam
Publication date
19-01-2022
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2022
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-022-04419-7

Other articles of this Issue 3/2022

Cellulose 3/2022 Go to the issue