Skip to main content
Top
Published in: Polymer Bulletin 6/2024

28-08-2023 | ORIGINAL PAPER

“Greener” homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the Eastern region of Morocco using ionic liquids as reaction medium

Authors: Ayoub Abarkan, Nafea Achalhi, Ridouan El Yousfi, Abderahmane El Idrissi, Soufian El Barkany, Mohamed Aqil

Published in: Polymer Bulletin | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the eastern region of Morocco, using anhydride and acid chloride compounds has been performed in ionic liquids (ILs) prepared in our laboratory as reaction mediums. ILs were chosen as solvents due to their green character and ability to disperse native cellulose compared to other solvents. [C4mim]OAc showed the highest solubility percentage of cellulose (15 wt%). Other principles of green chemistry were applied herein such as the uses of biomass, catalysts, and green solvents. The formed cellulosic esters were analyzed for structural, surface, and thermal properties by various analytical techniques: FTIR-ATR, NMR, XRD, TGA, and DSC. The esterificating agents were varied in this study to obtain different cellulose derivatives. Notably, high degrees of substitution (DS) were achieved for cellulose propionate (2.91) and cellulose butyrate (2.76). However, cellulose phthalate and cellulose laureate were obtained with low DS values, which affect their solubility in different solvents depending on their DS values. The effect of esterification on cellulose properties, on one hand, decreases the crystallinity index (CIr) and crystallite size, however, on the other hand, increased the surface area and pore volume. The contact angle measurements revealed an enhancement in the hydrophobicity of the cellulose esters. Particularly, cellulose propionate with high DS exhibited a significantly elevated contact angle, reaching 142.5°. This emphasizes that the hydrophobic nature of the modified cellulose can be improved by raising the DS, rather than solely relying on the length of the carbonyl chain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33 Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33
2.
go back to reference Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475 Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475
3.
go back to reference Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99 Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99
4.
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10 Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10
5.
go back to reference Jin X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J (2017) Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Biores Technol 241:603–609 Jin X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J (2017) Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Biores Technol 241:603–609
6.
go back to reference Isogai A, Ishizu A, Nakano J (1987) Dissolution mechanism of cellulose in SO2–amine–dimethylsulfoxide. J Appl Polym Sci 33:1283–1290 Isogai A, Ishizu A, Nakano J (1987) Dissolution mechanism of cellulose in SO2–amine–dimethylsulfoxide. J Appl Polym Sci 33:1283–1290
7.
go back to reference Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30:405–440 Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30:405–440
8.
go back to reference Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319 Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319
9.
go back to reference Klemm D, Heinze T, Philipp B, Wagenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297 Klemm D, Heinze T, Philipp B, Wagenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297
10.
go back to reference Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMed Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084PubMed
11.
go back to reference Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789 Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789
12.
go back to reference Dupont J, de Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692PubMed Dupont J, de Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692PubMed
13.
go back to reference Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290 Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290
14.
go back to reference Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975PubMed Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975PubMed
15.
go back to reference Ren Q, Wu J, Zhang J (2003) Synthesis of 1-allyl, 3-methyle mazolium-based roomtemperature ionic liquid and preluviinary study of its dissolving cellulose Ren Q, Wu J, Zhang J (2003) Synthesis of 1-allyl, 3-methyle mazolium-based roomtemperature ionic liquid and preluviinary study of its dissolving cellulose
16.
go back to reference Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297 Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297
17.
go back to reference Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275 Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275
18.
go back to reference Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587 Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587
19.
go back to reference Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48:1808–1810 Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48:1808–1810
20.
go back to reference Miao J, Sun H, Yu Y, Song X, Zhang L (2014) Quaternary ammonium acetate: an efficient ionic liquid for the dissolution and regeneration of cellulose. RSC Adv 4:36721–36724 Miao J, Sun H, Yu Y, Song X, Zhang L (2014) Quaternary ammonium acetate: an efficient ionic liquid for the dissolution and regeneration of cellulose. RSC Adv 4:36721–36724
21.
go back to reference Li X, Li H, Ling Z, Xu D, You T, Wu Y-Y, Xu F (2020) Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure. Macromolecules 53:3284–3295 Li X, Li H, Ling Z, Xu D, You T, Wu Y-Y, Xu F (2020) Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure. Macromolecules 53:3284–3295
22.
go back to reference Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306 Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306
23.
go back to reference Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445PubMed Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445PubMed
24.
go back to reference Köhler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci, Part A: Polym Chem 46:4070–4080 Köhler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci, Part A: Polym Chem 46:4070–4080
25.
go back to reference Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8–synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353PubMed Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8–synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353PubMed
26.
go back to reference Granström M, Mormann W, Frank P (2014) Method of chlorinating polysaccharides or oligosaccharides Granström M, Mormann W, Frank P (2014) Method of chlorinating polysaccharides or oligosaccharides
27.
go back to reference Köhler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Möllmann E, Becker W (2010) Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448 Köhler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Möllmann E, Becker W (2010) Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448
28.
go back to reference Granström M, Kavakka J, King A, Majoinen J, Mäkelä V, Helaja J, Hietala S, Virtanen T, Maunu S-L, Argyropoulos DS (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15:481–488 Granström M, Kavakka J, King A, Majoinen J, Mäkelä V, Helaja J, Hietala S, Virtanen T, Maunu S-L, Argyropoulos DS (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15:481–488
29.
go back to reference Xiao P, Zhang J, Feng Y, Wu J, He J, Zhang J (2014) Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: Cellulose diphenyl phosphate and its mixed esters. Cellulose 21:2369–2378 Xiao P, Zhang J, Feng Y, Wu J, He J, Zhang J (2014) Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: Cellulose diphenyl phosphate and its mixed esters. Cellulose 21:2369–2378
30.
go back to reference Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly (L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromol 10:2013–2018 Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly (L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromol 10:2013–2018
31.
go back to reference Guo Y, Wang X, Shen Z, Shu X, Sun R (2013) Preparation of cellulose-graft-poly (ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohyd Polym 92:77–83 Guo Y, Wang X, Shen Z, Shu X, Sun R (2013) Preparation of cellulose-graft-poly (ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohyd Polym 92:77–83
32.
go back to reference Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268 Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromol 5:266–268
33.
go back to reference Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525PubMed Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525PubMed
34.
go back to reference Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohyd Polym 92:307–311 Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohyd Polym 92:307–311
35.
go back to reference Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohyd Polym 68:17–25 Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohyd Polym 68:17–25
36.
go back to reference Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohyd Res 342:919–926 Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohyd Res 342:919–926
37.
go back to reference Köhler S, Heinze T (2007) Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14:489–495 Köhler S, Heinze T (2007) Efficient synthesis of cellulose furoates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14:489–495
38.
go back to reference Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308 Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308
39.
go back to reference Ma S, Xue X, Yu S, Wang Z (2012) High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crops Prod 35:135–139 Ma S, Xue X, Yu S, Wang Z (2012) High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Ind Crops Prod 35:135–139
40.
go back to reference Li HF, Li H, Zhong X, Li XD, Gibril ME, Zhang Y, Han KQ, Yu MH (2012) Study on the chemical modification of cellulose in ionic liquid with maleic anhydride. Adv Mater Res Trans Tech Publ 581:287–291 Li HF, Li H, Zhong X, Li XD, Gibril ME, Zhang Y, Han KQ, Yu MH (2012) Study on the chemical modification of cellulose in ionic liquid with maleic anhydride. Adv Mater Res Trans Tech Publ 581:287–291
41.
go back to reference Granström M, néePääkkö MK, Jin H, Kolehmainen E, Kilpeläinen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796 Granström M, néePääkkö MK, Jin H, Kolehmainen E, Kilpeläinen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796
42.
go back to reference Singh RK, Gupta P, Sharma OP, Ray SS (2015) Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J Ind Eng Chem 24:14–19 Singh RK, Gupta P, Sharma OP, Ray SS (2015) Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J Ind Eng Chem 24:14–19
43.
go back to reference Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762 Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762
44.
go back to reference Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277 Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277
45.
go back to reference Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312PubMed Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312PubMed
46.
go back to reference Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409PubMed Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409PubMed
47.
go back to reference Sèbe G, Ham-Pichavant F, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944 Sèbe G, Ham-Pichavant F, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944
48.
go back to reference Cunha AG, Mougel J-B, Cathala B, Berglund LA, Capron I (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335PubMed Cunha AG, Mougel J-B, Cathala B, Berglund LA, Capron I (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335PubMed
49.
go back to reference Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769PubMed Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769PubMed
50.
go back to reference Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806 Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806
51.
go back to reference Shin J, Nouranian S, Ureña-Benavides EE, Smith AE (2017) Dynamic mechanical and thermal properties of cellulose nanocrystal/epoxy nanocomposites. Green Mater 5:123–134 Shin J, Nouranian S, Ureña-Benavides EE, Smith AE (2017) Dynamic mechanical and thermal properties of cellulose nanocrystal/epoxy nanocomposites. Green Mater 5:123–134
52.
go back to reference Molnes SN, Mamonov A, Paso KG, Strand S, Syverud K (2018) Investigation of a new application for cellulose nanocrystals: a study of the enhanced oil recovery potential by use of a green additive. Cellulose 25:2289–2301 Molnes SN, Mamonov A, Paso KG, Strand S, Syverud K (2018) Investigation of a new application for cellulose nanocrystals: a study of the enhanced oil recovery potential by use of a green additive. Cellulose 25:2289–2301
53.
go back to reference Parajuli S, Prater LA, Heath T, Green KA, Moyer W, Hutton-Prager B, Ureña-Benavides EE (2020) Cellulose nanocrystal-stabilized dispersions of CO2, heptane, and perfluorooctane at elevated temperatures and pressures for underground CO2 sequestration. ACS Appl Nano Mater 3:12198–12208 Parajuli S, Prater LA, Heath T, Green KA, Moyer W, Hutton-Prager B, Ureña-Benavides EE (2020) Cellulose nanocrystal-stabilized dispersions of CO2, heptane, and perfluorooctane at elevated temperatures and pressures for underground CO2 sequestration. ACS Appl Nano Mater 3:12198–12208
54.
go back to reference El Idrissi A, El Barkany S, Amhamdi H, Maaroufi A-K (2013) Physicochemical characterization of celluloses extracted from Esparto “Stipa tenacissima” of Eastern Morocco. J Appl Polym Sci 128:537–548 El Idrissi A, El Barkany S, Amhamdi H, Maaroufi A-K (2013) Physicochemical characterization of celluloses extracted from Esparto “Stipa tenacissima” of Eastern Morocco. J Appl Polym Sci 128:537–548
55.
go back to reference Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Prod 70:125–133 Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Prod 70:125–133
56.
go back to reference Liu C-F, Sun R-C, Zhang A-P, Qin M-H, Ren J-L, Wang X-A (2007) Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. J Agric Food Chem 55:2399–2406PubMed Liu C-F, Sun R-C, Zhang A-P, Qin M-H, Ren J-L, Wang X-A (2007) Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts. J Agric Food Chem 55:2399–2406PubMed
57.
go back to reference Hinner LP, Wissner JL, Beurer A, Nebel BA, Hauer B (2016) Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem 18:6099–6107 Hinner LP, Wissner JL, Beurer A, Nebel BA, Hauer B (2016) Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem 18:6099–6107
58.
go back to reference Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677 Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677
59.
go back to reference El-Sakhawy M, Tohamy H-AS, Salama A, Kamel S (2019) Thermal properties of carboxymethyl cellulose acetate butyrate. Cellul Chem Technol 53:667–675 El-Sakhawy M, Tohamy H-AS, Salama A, Kamel S (2019) Thermal properties of carboxymethyl cellulose acetate butyrate. Cellul Chem Technol 53:667–675
60.
go back to reference Fringant C, Desbrieres J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer 37:2663–2673 Fringant C, Desbrieres J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer 37:2663–2673
61.
go back to reference Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804 Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804
62.
go back to reference Chen Z, Zhang J, Xiao P, Tian W, Zhang J (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939 Chen Z, Zhang J, Xiao P, Tian W, Zhang J (2018) Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng 6:4931–4939
63.
go back to reference Zhuang JM, Steiner PR (1993) Thermal reactions of diisocyanate (MDI) with phenols and benzylalcohols: DSC study and synthesis of MDI adducts Zhuang JM, Steiner PR (1993) Thermal reactions of diisocyanate (MDI) with phenols and benzylalcohols: DSC study and synthesis of MDI adducts
64.
go back to reference Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128 Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128
65.
go back to reference ELIdrissi A, Barkany S, Hassan A, Maaroufi A (2012) New approach to predict the solubility of polymers, application: cellulose acetate at various DS, prepared from Alfa “Stipa tenacissima” of Eastern Morocco. J Mater Environ Sci 3:270 ELIdrissi A, Barkany S, Hassan A, Maaroufi A (2012) New approach to predict the solubility of polymers, application: cellulose acetate at various DS, prepared from Alfa “Stipa tenacissima” of Eastern Morocco. J Mater Environ Sci 3:270
66.
go back to reference Huang FY, Yu Y, Wu XJ (2011) Characterization and properties of cellulose oleate. Adv Mater Res 197–198:1306–1309 Huang FY, Yu Y, Wu XJ (2011) Characterization and properties of cellulose oleate. Adv Mater Res 197–198:1306–1309
67.
go back to reference El Seoud OA, Bioni TA, Dignani MT (2021) Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: quantification of the relative importance of hydrogen bonding and hydrophobic interactions. J Molecul Liq 322:114848 El Seoud OA, Bioni TA, Dignani MT (2021) Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: quantification of the relative importance of hydrogen bonding and hydrophobic interactions. J Molecul Liq 322:114848
68.
go back to reference Huang L, Wu Q, Wang Q, Wolcott M (2019) One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustain Chem Eng 7:15920–15927 Huang L, Wu Q, Wang Q, Wolcott M (2019) One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustain Chem Eng 7:15920–15927
69.
go back to reference Hou D-F, Li M-L, Yan C, Zhou L, Liu Z-Y, Yang W, Yang M-B (2021) Mechanochemical preparation of thermoplastic cellulose oleate by ball milling. Green Chem 23:2069–2078 Hou D-F, Li M-L, Yan C, Zhou L, Liu Z-Y, Yang W, Yang M-B (2021) Mechanochemical preparation of thermoplastic cellulose oleate by ball milling. Green Chem 23:2069–2078
70.
go back to reference Zhang W, Zhou N, Zhang Y, Huang Z, Hu H, Liang J, Qin Y (2021) Construction of thermoplastic cellulose esters matrix composites with enhanced flame retardancy and mechanical properties by embedding hydrophobic magnesium hydroxide. J Appl Polym Sci 138:50677 Zhang W, Zhou N, Zhang Y, Huang Z, Hu H, Liang J, Qin Y (2021) Construction of thermoplastic cellulose esters matrix composites with enhanced flame retardancy and mechanical properties by embedding hydrophobic magnesium hydroxide. J Appl Polym Sci 138:50677
Metadata
Title
“Greener” homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the Eastern region of Morocco using ionic liquids as reaction medium
Authors
Ayoub Abarkan
Nafea Achalhi
Ridouan El Yousfi
Abderahmane El Idrissi
Soufian El Barkany
Mohamed Aqil
Publication date
28-08-2023
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 6/2024
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-023-04965-5

Other articles of this Issue 6/2024

Polymer Bulletin 6/2024 Go to the issue

Premium Partners