Skip to main content
Top

2021 | OriginalPaper | Chapter

Group Molecular Orbital Method and Python-Based Programming Approach

Author : Tomomi Shimazaki

Published in: Recent Advances of the Fragment Molecular Orbital Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, an algorithm to solve the Huzinaga subsystem self-consistent field equations is described, together with two approximations: a local expansion of subsystem molecular orbitals and a truncation of the projection operator. We have referred to the algorithm as the group molecular orbital (GMO) method, and its theoretical concept is based on fragmenting and dividing molecular orbitals, similar to the fragment molecular orbital (FMO) method. However, the GMO method can define a Hamiltonian for each molecular group (fragment), unlike FMO. In addition, we discuss a Python-based programming approach to efficiently implement the GMO algorithm. Python can provide several advantages in program development, including flexibility and high productivity, easy integration for different algorithms, and abundant tools and libraries. We also present that the Python-based approach does not sacrifice the computational performance of quantum chemistry calculations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701CrossRef Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701CrossRef
2.
go back to reference Huzinaga S, Cantu AA (1971) Theory of separability of many electron systems. J Chem Phys 55:5543 Huzinaga S, Cantu AA (1971) Theory of separability of many electron systems. J Chem Phys 55:5543
3.
go back to reference Shimazaki T, Kitaura K, Fedorov DG, Nakajima T (2017) Group molecular orbital approach to solve the huzinaga subsystem self-consistent-field equations. J Chem Phys 146(8):084109CrossRef Shimazaki T, Kitaura K, Fedorov DG, Nakajima T (2017) Group molecular orbital approach to solve the huzinaga subsystem self-consistent-field equations. J Chem Phys 146(8):084109CrossRef
4.
go back to reference Yang W (1991) Direct calculation of electron density in density-functional theory. Phys Rev Lett 66:1438CrossRef Yang W (1991) Direct calculation of electron density in density-functional theory. Phys Rev Lett 66:1438CrossRef
6.
go back to reference Nagata T, Takahashi O, Saito K, Iwata S (2001) Basis set superposition error free self-consistent field method for molecular interaction in multi-component systems: projection operator formalism. J Chem Phys 115(8):3553CrossRef Nagata T, Takahashi O, Saito K, Iwata S (2001) Basis set superposition error free self-consistent field method for molecular interaction in multi-component systems: projection operator formalism. J Chem Phys 115(8):3553CrossRef
7.
go back to reference Exner TE, Mezey PG (2002) Ab initio-quality electrostatic potentials for proteins: an application of the ADMA approach. J Phys Chem A 106(48):11791CrossRef Exner TE, Mezey PG (2002) Ab initio-quality electrostatic potentials for proteins: an application of the ADMA approach. J Phys Chem A 106(48):11791CrossRef
8.
go back to reference Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351(5–6):475–480CrossRef Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351(5–6):475–480CrossRef
9.
go back to reference Khaliullin RZ, Head-Gordon M, Bell AT (2006) An efficient self-consistent field method for large systems of weakly interacting components. J Chem Phys 124(20):204105CrossRef Khaliullin RZ, Head-Gordon M, Bell AT (2006) An efficient self-consistent field method for large systems of weakly interacting components. J Chem Phys 124(20):204105CrossRef
10.
go back to reference Seijo L, Barandiaran Z, Soler JM (2007) Order-N and embedded-cluster first-principles DFT calculations using siesta/mosaico. Theor Chim Acta 118(3):541–547CrossRef Seijo L, Barandiaran Z, Soler JM (2007) Order-N and embedded-cluster first-principles DFT calculations using siesta/mosaico. Theor Chim Acta 118(3):541–547CrossRef
11.
go back to reference Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRef Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRef
12.
go back to reference Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112(1):632CrossRef Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112(1):632CrossRef
13.
go back to reference Kobayashi M, Nakai H (2012) How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method. Phys Chem Chem Phys 14(21):7629CrossRef Kobayashi M, Nakai H (2012) How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method. Phys Chem Chem Phys 14(21):7629CrossRef
14.
go back to reference Sahu N, Gadre SR (2014) Molecular tailoring approach: a route for ab initio treatment of large clusters. Acc Chem Res 47(9):2739CrossRef Sahu N, Gadre SR (2014) Molecular tailoring approach: a route for ab initio treatment of large clusters. Acc Chem Res 47(9):2739CrossRef
15.
go back to reference Watanabe Y, Matsuoka O (2014) Nonorthogonal molecular orbital method: single-determinant theory. J Chem Phys 140(20):204111CrossRef Watanabe Y, Matsuoka O (2014) Nonorthogonal molecular orbital method: single-determinant theory. J Chem Phys 140(20):204111CrossRef
17.
go back to reference Shimazaki T, Hashimoto M, Maeda T (2015) Developing a high-performance quantum chemistry program with a dynamic scripting language. In: Proceedings of the 3rd international workshop on software engineering for high performance computing in computational science and engineering. Association for computing machinery, p 9 Shimazaki T, Hashimoto M, Maeda T (2015) Developing a high-performance quantum chemistry program with a dynamic scripting language. In: Proceedings of the 3rd international workshop on software engineering for high performance computing in computational science and engineering. Association for computing machinery, p 9
20.
go back to reference Dalcin LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using python. Adv Water Resour 34(9):1124–1139CrossRef Dalcin LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using python. Adv Water Resour 34(9):1124–1139CrossRef
Metadata
Title
Group Molecular Orbital Method and Python-Based Programming Approach
Author
Tomomi Shimazaki
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9235-5_29

Premium Partner