Skip to main content
Top
Published in: International Journal of Computer Vision 3/2020

22-07-2019

Group Normalization

Authors: Yuxin Wu, Kaiming He

Published in: International Journal of Computer Vision | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train. However, normalizing along the batch dimension introduces problems—BN’s error increases rapidly when the batch size becomes smaller, caused by inaccurate batch statistics estimation. This limits BN’s usage for training larger models and transferring features to computer vision tasks including detection, segmentation, and video, which require small batches constrained by memory consumption. In this paper, we present Group Normalization (GN) as a simple alternative to BN. GN divides the channels into groups and computes within each group the mean and variance for normalization. GN’s computation is independent of batch sizes, and its accuracy is stable in a wide range of batch sizes. On ResNet-50 trained in ImageNet, GN has 10.6% lower error than its BN counterpart when using a batch size of 2; when using typical batch sizes, GN is comparably good with BN and outperforms other normalization variants. Moreover, GN can be naturally transferred from pre-training to fine-tuning. GN can outperform its BN-based counterparts for object detection and segmentation in COCO (https://​github.​com/​facebookresearch​/​Detectron/​blob/​master/​projects/​GN), and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks. GN can be easily implemented by a few lines of code in modern libraries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the context of this paper, we use “batch size” to refer to the number of samples per worker (e.g., GPU), unless noted. BN’s statistics are computed for each worker, but not broadcast across workers, as is standard in many libraries.
 
4
For completeness, we have also trained ResNet-50 with WN (Salimans and Kingma 2016), which is filter (instead of feature) normalization. WN’s result is 28.2%.
 
5
Detectron Girshick et al. (2018) uses pre-trained models provided by the authors of He et al. (2016). For fair comparisons, we instead use the models pre-trained in this paper. The object detection and segmentation accuracy is statistically similar between these pre-trained models.
 
6
For models trained from scratch, we turn off the default StopGrad in Detectron that freezes the first few layers.
 
7
We refer to “distributed training” as training with multiple workers (GPUs), which are often hosted in multiple machines. In our infrastructure, typical settings are 8 GPUs per machine.
 
Literature
go back to reference Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In Operating systems design and implementation (OSDI). Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In Operating systems design and implementation (OSDI).
go back to reference Arpit, D., Zhou, Y., Kota, B., & Govindaraju, V. (2016). Normalization propagation: A parametric technique for removing internal covariate shift in deep networks. In International conference on machine learning (ICML). Arpit, D., Zhou, Y., Kota, B., & Govindaraju, V. (2016). Normalization propagation: A parametric technique for removing internal covariate shift in deep networks. In International conference on machine learning (ICML).
go back to reference Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51. CrossRef Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51. CrossRef
go back to reference Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. In Computer vision and pattern recognition (CVPR). Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the kinetics dataset. In Computer vision and pattern recognition (CVPR).
go back to reference Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Computer vision and pattern recognition (CVPR). Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Computer vision and pattern recognition (CVPR).
go back to reference Cohen, T., & Welling, M. (2016). Group equivariant convolutional networks. In International conference on machine learning (ICML). Cohen, T., & Welling, M. (2016). Group equivariant convolutional networks. In International conference on machine learning (ICML).
go back to reference Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer vision and pattern recognition (CVPR). Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer vision and pattern recognition (CVPR).
go back to reference Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In Neural information processing systems (NeurIPS). Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In Neural information processing systems (NeurIPS).
go back to reference Dieleman, S., De Fauw, J., & Kavukcuoglu, K. (2016). Exploiting cyclic symmetry in convolutional neural networks. In International conference on machine learning (ICML). Dieleman, S., De Fauw, J., & Kavukcuoglu, K. (2016). Exploiting cyclic symmetry in convolutional neural networks. In International conference on machine learning (ICML).
go back to reference Girshick, R. (2015). Fast R-CNN. In International conference on computer vision (ICCV). Girshick, R. (2015). Fast R-CNN. In International conference on computer vision (ICCV).
go back to reference Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics (AISTATS). Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics (AISTATS).
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Neural information processing systems (NeurIPS). Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Neural information processing systems (NeurIPS).
go back to reference Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., et al. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv:​1706.​02677.
go back to reference He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In International conference on computer vision (ICCV). He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In International conference on computer vision (ICCV).
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In International conference on computer vision (ICCV). He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In International conference on computer vision (ICCV).
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Computer vision and pattern recognition (CVPR). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Computer vision and pattern recognition (CVPR).
go back to reference Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.CrossRef Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.CrossRef
go back to reference Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780.CrossRef Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780.CrossRef
go back to reference Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:​1704.​04861.
go back to reference Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.Q. (2017). Densely connected convolutional networks. In Computer vision and pattern recognition (CVPR). Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.Q. (2017). Densely connected convolutional networks. In Computer vision and pattern recognition (CVPR).
go back to reference Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in batch-normalized models. In Neural Information processing systems (NeurIPS). Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in batch-normalized models. In Neural Information processing systems (NeurIPS).
go back to reference Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (ICML). Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (ICML).
go back to reference Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Computer vision and pattern recognition (CVPR). Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Computer vision and pattern recognition (CVPR).
go back to reference Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al. (2009). What is the best multi-stage architecture for object recognition? In International conference on computer vision (ICCV). Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al. (2009). What is the best multi-stage architecture for object recognition? In International conference on computer vision (ICCV).
go back to reference Jegou, H., Douze, M., Schmid, C., & Perez, P. (2010). Aggregating local descriptors into a compact image representation. In Computer vision and pattern recognition (CVPR). Jegou, H., Douze, M., Schmid, C., & Perez, P. (2010). Aggregating local descriptors into a compact image representation. In Computer vision and pattern recognition (CVPR).
go back to reference Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., et al. (2017). The Kinetics human action video dataset. arXiv:1705.06950. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., et al. (2017). The Kinetics human action video dataset. arXiv:​1705.​06950.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Neural information processing systems (NeurIPS). Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Neural information processing systems (NeurIPS).
go back to reference LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural networks: Tricks of the trade. LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural networks: Tricks of the trade.
go back to reference Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Computer vision and pattern recognition (CVPR). Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In Computer vision and pattern recognition (CVPR).
go back to reference Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object detection. In International conference on computer vision (ICCV). Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object detection. In International conference on computer vision (ICCV).
go back to reference Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European conference on computer vision (ECCV). Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European conference on computer vision (ECCV).
go back to reference Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Computer vision and pattern recognition (CVPR). Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Computer vision and pattern recognition (CVPR).
go back to reference Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV), 60, 91–110.CrossRef Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV), 60, 91–110.CrossRef
go back to reference Lyu, S., & Simoncelli, E. P. (2008). Nonlinear image representation using divisive normalization. In Computer vision and pattern recognition (CVPR). Lyu, S., & Simoncelli, E. P. (2008). Nonlinear image representation using divisive normalization. In Computer vision and pattern recognition (CVPR).
go back to reference Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision (IJCV), 42, 145–175.CrossRef Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision (IJCV), 42, 145–175.CrossRef
go back to reference Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., & Sun, J. (2018). MegDet: A large mini-batch object detector. In Computer vision and pattern recognition (CVPR). Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., & Sun, J. (2018). MegDet: A large mini-batch object detector. In Computer vision and pattern recognition (CVPR).
go back to reference Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In Computer vision and pattern recognition (CVPR). Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In Computer vision and pattern recognition (CVPR).
go back to reference Rebuffi, S. A., Bilen, H., & Vedaldi, A. (2017). Learning multiple visual domains with residual adapters. In Neural information processing systems (NeurIPS). Rebuffi, S. A., Bilen, H., & Vedaldi, A. (2017). Learning multiple visual domains with residual adapters. In Neural information processing systems (NeurIPS).
go back to reference Ren, M., Liao, R., Urtasun, R., Sinz, F. H., & Zemel, R. S. (2017a). Normalizing the normalizers: Comparing and extending network normalization schemes. In International conference on learning representations (ICLR). Ren, M., Liao, R., Urtasun, R., Sinz, F. H., & Zemel, R. S. (2017a). Normalizing the normalizers: Comparing and extending network normalization schemes. In International conference on learning representations (ICLR).
go back to reference Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Neural information processing systems (NeurIPS). Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Neural information processing systems (NeurIPS).
go back to reference Ren, S., He, K., Girshick, R., Zhang, X., & Sun, J. (2017b). Object detection networks on convolutional feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 39, 1476–1481.CrossRef Ren, S., He, K., Girshick, R., Zhang, X., & Sun, J. (2017b). Object detection networks on convolutional feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 39, 1476–1481.CrossRef
go back to reference Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 5, 1.MATH Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 5, 1.MATH
go back to reference Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV)., 115, 211–252.MathSciNetCrossRef Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV)., 115, 211–252.MathSciNetCrossRef
go back to reference Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Neural information processing systems (NeurIPS). Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Neural information processing systems (NeurIPS).
go back to reference Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819.CrossRef Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience, 4, 819.CrossRef
go back to reference Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection using convolutional networks. In International conference on learning representations (ICLR). Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection using convolutional networks. In International conference on learning representations (ICLR).
go back to reference Shillingford, B., Assael, Y., Hoffman, M. W., Paine, T., Hughes, C., Prabhu, U., et al. (2018). Large-scale visual speech recognition. arXiv:1807.05162. Shillingford, B., Assael, Y., Hoffman, M. W., Paine, T., Hughes, C., Prabhu, U., et al. (2018). Large-scale visual speech recognition. arXiv:​1807.​05162.
go back to reference Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354.CrossRef Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550, 354.CrossRef
go back to reference Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.CrossRef Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.CrossRef
go back to reference Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR). Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations (ICLR).
go back to reference Szegedy, C., Ioffe, S., & Vanhoucke, V. (2016a). Inception-v4, inception-resnet and the impact of residual connections on learning. In ICLR workshop. Szegedy, C., Ioffe, S., & Vanhoucke, V. (2016a). Inception-v4, inception-resnet and the impact of residual connections on learning. In ICLR workshop.
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Computer vision and pattern recognition (CVPR). Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Computer vision and pattern recognition (CVPR).
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016b). Rethinking the inception architecture for computer vision. In Computer vision and pattern recognition (CVPR). Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016b). Rethinking the inception architecture for computer vision. In Computer vision and pattern recognition (CVPR).
go back to reference Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In International conference on computer vision (ICCV). Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In International conference on computer vision (ICCV).
go back to reference Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016). Instance normalization: The missing ingredient for fast stylization. arXiv:1607.08022. Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016). Instance normalization: The missing ingredient for fast stylization. arXiv:​1607.​08022.
go back to reference Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Computer vision and pattern recognition (CVPR). Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Computer vision and pattern recognition (CVPR).
go back to reference Wu, Y., & He, K. (2018). Group normalization. In European conference on computer vision (ECCV). Wu, Y., & He, K. (2018). Group normalization. In European conference on computer vision (ECCV).
go back to reference Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Computer vision and pattern recognition (CVPR). Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Computer vision and pattern recognition (CVPR).
go back to reference Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional neural networks. In European conference on computer vision (ECCV). Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional neural networks. In European conference on computer vision (ECCV).
go back to reference Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Computer vision and pattern recognition (CVPR). Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Computer vision and pattern recognition (CVPR).
Metadata
Title
Group Normalization
Authors
Yuxin Wu
Kaiming He
Publication date
22-07-2019
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 3/2020
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-019-01198-w

Other articles of this Issue 3/2020

International Journal of Computer Vision 3/2020 Go to the issue

Premium Partner