Skip to main content
Top
Published in: Journal of Materials Science 17/2019

28-05-2019 | Electronic materials

Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays

Authors: Jingcai Xu, Jing Wang, Bo Hong, Xiaoling Peng, Xinqing Wang, Hongliang Ge, Jun Hu

Published in: Journal of Materials Science | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Single crystalline Ni gradient–diameter magnetic nanowire arrays (GDMNWs) with different D/d (the diameter of thick end (D) and thin end (d) of GDMNWs) were successfully prepared by constant potential electrodeposition into a tapered anodic aluminum oxide template. The TEM images of samples illustrated that the obvious gradient–diameter nanowires had been obtained. The HRTEM, SAED images and XRD pattern demonstrated that the nanowire arrays grew with Ni single crystal structures. The magnetic interaction of GDMNWs was investigated by first-order reversal curves (FORCs) and δM(H) plots. The FORCs diagrams and δM(H) plots of different D/d ratio were compared and indicated that the magnetic interaction of GDMNWs with a thin end was dominated by dipolar interaction, and the thick end was dominated by exchange interaction. There was a gradient overlap effect in dipolar interaction and exchange interaction between the thin end and thick end. The spatial distributions of such unique magnetic interaction of GDMNWs were likely to produce entirely new physical characteristics of memory effect and tunable ferromagnetic resonance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kwak M, Han L, Chen JJ, Fan R (2015) Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11:5600–5610CrossRef Kwak M, Han L, Chen JJ, Fan R (2015) Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11:5600–5610CrossRef
2.
go back to reference Garcia JM, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P, RuizHitzky E (1999) Magnetic behavior of an array of cobalt nanowires. J Appl Phys 8:5480–5482CrossRef Garcia JM, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P, RuizHitzky E (1999) Magnetic behavior of an array of cobalt nanowires. J Appl Phys 8:5480–5482CrossRef
3.
go back to reference Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802CrossRef Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802CrossRef
4.
go back to reference Singh R (2013) Unexpected magnetism in nanomaterials. J Magn Magn Mater 346:58–73CrossRef Singh R (2013) Unexpected magnetism in nanomaterials. J Magn Magn Mater 346:58–73CrossRef
5.
go back to reference Hrkac G, Dean J, Allwood DA (2011) Nanowire spintronics for storage class memories and logic. Phys Eng Sci 369:3214–3228CrossRef Hrkac G, Dean J, Allwood DA (2011) Nanowire spintronics for storage class memories and logic. Phys Eng Sci 369:3214–3228CrossRef
6.
go back to reference Xu C, Li Z, Yang C, Zou P, Bi Xie, Lin Z, Zhang Z, Li B, Kang F, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:5769–5777 Xu C, Li Z, Yang C, Zou P, Bi Xie, Lin Z, Zhang Z, Li B, Kang F, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:5769–5777
7.
go back to reference Carignan LP, Yelon A, Ménard D, Caloz C (2011) Ferromagnetic nanowire metamaterials: theory and applications. IEEE T Microw Theory 59:2568–2585CrossRef Carignan LP, Yelon A, Ménard D, Caloz C (2011) Ferromagnetic nanowire metamaterials: theory and applications. IEEE T Microw Theory 59:2568–2585CrossRef
8.
go back to reference Zhang WX, Yang SH (2009) In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc Chem Res 42:1617–1627CrossRef Zhang WX, Yang SH (2009) In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc Chem Res 42:1617–1627CrossRef
9.
go back to reference Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef
10.
go back to reference Parkin SP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190–194CrossRef Parkin SP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190–194CrossRef
11.
go back to reference Wang J, Zuo Z, Huang L, Warsib MA, Xiao JQ, Hu J (2018) Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors. Chem Commun 54:7515–7519CrossRef Wang J, Zuo Z, Huang L, Warsib MA, Xiao JQ, Hu J (2018) Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors. Chem Commun 54:7515–7519CrossRef
12.
go back to reference Proenca MP, Sousa CT, Ventura J, Garcia J, Vazquez M, Araujo JP (2017) Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J Alloys Compd 699:421–429CrossRef Proenca MP, Sousa CT, Ventura J, Garcia J, Vazquez M, Araujo JP (2017) Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J Alloys Compd 699:421–429CrossRef
13.
go back to reference Diao Z, Decorde N, Stamenov P, Rode K, Feng G, Coey JMD (2012) Magnetization processes in micron-scale (CoFe/Pt)n multilayers with perpendicular anisotropy: first-order reversal curves measured by extraordinary Hall effect. J Appl Phys 111:07B538CrossRef Diao Z, Decorde N, Stamenov P, Rode K, Feng G, Coey JMD (2012) Magnetization processes in micron-scale (CoFe/Pt)n multilayers with perpendicular anisotropy: first-order reversal curves measured by extraordinary Hall effect. J Appl Phys 111:07B538CrossRef
14.
go back to reference Pan M, Li Z, Wu Q, Ge H, Xu H (2019) Study of the role of Ti doping on magnetic properties of some nanocomposite alloys of α-Fe/Nd2Fe14B type. J Magn Magn Mater 471:457–463CrossRef Pan M, Li Z, Wu Q, Ge H, Xu H (2019) Study of the role of Ti doping on magnetic properties of some nanocomposite alloys of α-Fe/Nd2Fe14B type. J Magn Magn Mater 471:457–463CrossRef
15.
go back to reference Lyubina J, Müller KH, Wolf M, Hannemann U (2010) A two-particle exchange interaction model. J Magn Magn Mater 322:2948–2955CrossRef Lyubina J, Müller KH, Wolf M, Hannemann U (2010) A two-particle exchange interaction model. J Magn Magn Mater 322:2948–2955CrossRef
16.
go back to reference Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRef Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRef
17.
go back to reference Hertel R, Kirschner J (2004) Magnetization reversal dynamics in nickel nanowires. Phys B 343:206–210CrossRef Hertel R, Kirschner J (2004) Magnetization reversal dynamics in nickel nanowires. Phys B 343:206–210CrossRef
18.
go back to reference Dobrot CI, Stancu A (2013) What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J Appl Phys 113:043928CrossRef Dobrot CI, Stancu A (2013) What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J Appl Phys 113:043928CrossRef
19.
go back to reference Mayergoyz I (1986) Mathematical models of hysteresis. IEEE Trans Magn 22:603–608CrossRef Mayergoyz I (1986) Mathematical models of hysteresis. IEEE Trans Magn 22:603–608CrossRef
20.
go back to reference Muxworthy AR, King JG, Heslop D (2005) Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals. J Geophys Res 110:B01105CrossRef Muxworthy AR, King JG, Heslop D (2005) Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals. J Geophys Res 110:B01105CrossRef
21.
go back to reference Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent JL, Liu K (2014) Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 4:4204CrossRef Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent JL, Liu K (2014) Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 4:4204CrossRef
22.
go back to reference Dobrota CI, Stancu A (2015) Tracking the individual magnetic wires’ switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method. Phys B Condens Matter 457:280–286CrossRef Dobrota CI, Stancu A (2015) Tracking the individual magnetic wires’ switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method. Phys B Condens Matter 457:280–286CrossRef
23.
go back to reference Maurer T, Zighem F, Fang W, Ott F, Chaboussant G, Soumare Y, Atmane KA, Piquemal JY, Viau G (2011) Dipolar interactions in magnetic nanowire aggregates. J Appl Phys 110:123924CrossRef Maurer T, Zighem F, Fang W, Ott F, Chaboussant G, Soumare Y, Atmane KA, Piquemal JY, Viau G (2011) Dipolar interactions in magnetic nanowire aggregates. J Appl Phys 110:123924CrossRef
24.
go back to reference Elbaile L, Crespo RD, Vega V, Garcia JA (2012) Magnetostatic interaction in Fe–Co nanowires. J Nanomater 1:198453 Elbaile L, Crespo RD, Vega V, Garcia JA (2012) Magnetostatic interaction in Fe–Co nanowires. J Nanomater 1:198453
25.
go back to reference Pardavi-Horvath M, Si PE, Vazquez M, Rosa WO, Badini G (2008) Interaction effects in Permalloy nanowires systems. J Appl Phys 103:07D517CrossRef Pardavi-Horvath M, Si PE, Vazquez M, Rosa WO, Badini G (2008) Interaction effects in Permalloy nanowires systems. J Appl Phys 103:07D517CrossRef
26.
go back to reference Kou XM, Fan X, Zhu H, Xiao JQ (2009) Tunable ferromagnetic resonance in NiFe nanowires with strong magnetostatic interaction. Appl Phys Lett 94:112509CrossRef Kou XM, Fan X, Zhu H, Xiao JQ (2009) Tunable ferromagnetic resonance in NiFe nanowires with strong magnetostatic interaction. Appl Phys Lett 94:112509CrossRef
27.
go back to reference Kou XM, Fan X, Dumas RK, Lu Q, Zhang YP, Zhu H, Zhang XK, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393–1397CrossRef Kou XM, Fan X, Dumas RK, Lu Q, Zhang YP, Zhu H, Zhang XK, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393–1397CrossRef
Metadata
Title
Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays
Authors
Jingcai Xu
Jing Wang
Bo Hong
Xiaoling Peng
Xinqing Wang
Hongliang Ge
Jun Hu
Publication date
28-05-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03694-3

Other articles of this Issue 17/2019

Journal of Materials Science 17/2019 Go to the issue

Premium Partners