Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2016

01-09-2016

Hamiltonicity and cycle extensions in 0-block-intersection graphs of balanced incomplete block designs

Authors: Jason T. LeGrow, David A. Pike, Jonathan Poulin

Published in: Designs, Codes and Cryptography | Issue 3/2016

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A cycle \(\mathscr {C}\) in a graph \(G\) is called extendable if there is another cycle in \(G\) which contains all the vertices of \(\mathscr {C}\) and exactly one other vertex. A graph \(G\) is cycle extendable if all its non-Hamilton cycles are extendable. A balanced incomplete block design with parameters \(v\), \(k\), and \(\lambda \), written BIBD\( (v, k, \lambda ) \), is a pair \(\mathscr {D}= (V, \mathscr {B})\) of sets, where \(V\) is a set of \(v\) elements and \(\mathscr {B}\) is a set of \(k\)-subsets of \(V\)—called blocks—such that each pair of elements of \(V\) appears in exactly \(\lambda \) blocks in \(\mathscr {B}\). The 0-block-intersection graph of a design \(\mathscr {D}= (V, \mathscr {B})\) is the graph \(\overline{G}_\mathscr {D}\) whose vertex set is \(\mathscr {B}\) and in which two blocks are adjacent if and only if they do not intersect. An \(A_1'\) cyclic ordering of a BIBD\( (v, k, \lambda )\) is a listing of the elements of its block set such that consecutive blocks do not intersect and the last block does not intersect the first—such an ordering corresponds to a Hamilton cycle in the 0-block-intersection graph of the design and to a 0-intersecting Gray code for the design, and vice versa. In this paper we demonstrate that if \(\overline{G}_\mathscr {D}\) is the 0-block-intersection graph of \(\mathscr {D}\), a BIBD\( (v, k, \lambda )\), then \(\overline{G}_\mathscr {D}\) is Hamiltonian if \(\lambda =1\) and \(v > \left( \frac{1+\sqrt{5}}{2}\right) k^2+k\), and cycle extendable if \(v > 2k^2+1\). We also present a polynomial-time algorithm for finding cycles of any length in the 0-block-intersection graph of a BIBD\( (v, k, \lambda ) \) with \(v > (2+\sqrt{3})k^2+1\) if \(\lambda =1\) or \(v > 5k^2+1\) if \(\lambda \geqslant 2\).
Literature
1.
go back to reference Abueida A.A., Pike D.A.: Cycle extensions in BIBD block-intersection graphs. J. Comb. Des. 21, 303–310 (2013). Abueida A.A., Pike D.A.: Cycle extensions in BIBD block-intersection graphs. J. Comb. Des. 21, 303–310 (2013).
2.
go back to reference Abueida A.A., Sritharan R.: Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discret. Math. 20(3), 669–681 (2006). Abueida A.A., Sritharan R.: Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discret. Math. 20(3), 669–681 (2006).
3.
go back to reference Alspach B., Hare D.: Edge-pancyclic block-intersection graphs. Discret. Math. 97, 17–24 (1991). Alspach B., Hare D.: Edge-pancyclic block-intersection graphs. Discret. Math. 97, 17–24 (1991).
4.
go back to reference Alspach B., Heinrich K., Mohar B.: A note on Hamilton cycles in block-intersection graphs. Finite Geom. Comb. Des.-Contemp. Math. 111, 1–4 (1990). Alspach B., Heinrich K., Mohar B.: A note on Hamilton cycles in block-intersection graphs. Finite Geom. Comb. Des.-Contemp. Math. 111, 1–4 (1990).
5.
go back to reference Case G.A., Pike D.A.: Pancyclic PBD block-intersection graphs. Discret. Math. 308, 896–900 (2008). Case G.A., Pike D.A.: Pancyclic PBD block-intersection graphs. Discret. Math. 308, 896–900 (2008).
6.
go back to reference Chen G., Faudree R.J., Gould R.J., Jacobson M.S.: Cycle extendability of Hamiltonian interval graphs. SIAM J. Discret. Math. 20(3), 682–689 (2006). Chen G., Faudree R.J., Gould R.J., Jacobson M.S.: Cycle extendability of Hamiltonian interval graphs. SIAM J. Discret. Math. 20(3), 682–689 (2006).
7.
go back to reference Chvátal V., Erdős P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972). Chvátal V., Erdős P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972).
8.
go back to reference Cohen M.B., Colbourn C.J.: Optimal and pessimal orderings of Steiner triple systems in disk arrays. Theor. Comput. Sci. 297, 103–117 (2003). Cohen M.B., Colbourn C.J.: Optimal and pessimal orderings of Steiner triple systems in disk arrays. Theor. Comput. Sci. 297, 103–117 (2003).
9.
go back to reference Dewar M., Stevens B.: Ordering Block Designs: Gray Codes, Universal Cycles, and Configuration Orderings. Springer, New York (2012). Dewar M., Stevens B.: Ordering Block Designs: Gray Codes, Universal Cycles, and Configuration Orderings. Springer, New York (2012).
10.
go back to reference Dirac G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22, 61–85 (1960). Dirac G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22, 61–85 (1960).
11.
go back to reference Fisher R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10, 52–75 (1940). Fisher R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10, 52–75 (1940).
12.
go back to reference Ford L.R., Fulkerson D.R.: Maximal flow through graphs. Can. J. Math. 8, 399–404 (1956). Ford L.R., Fulkerson D.R.: Maximal flow through graphs. Can. J. Math. 8, 399–404 (1956).
13.
go back to reference Hare D.R.: Cycles in the block-intersection graph of pairwise balanced designs. Discret. Math. 137, 211–221 (1995). Hare D.R.: Cycles in the block-intersection graph of pairwise balanced designs. Discret. Math. 137, 211–221 (1995).
14.
go back to reference Hendry G.R.T.: Extending cycles in graphs. Discret. Math. 85, 59–72 (1990). Hendry G.R.T.: Extending cycles in graphs. Discret. Math. 85, 59–72 (1990).
15.
go back to reference Horák P., Rosa A.: Decomposing Steiner triple systems into small configurations. Ars Comb. 26, 91–105 (1988). Horák P., Rosa A.: Decomposing Steiner triple systems into small configurations. Ars Comb. 26, 91–105 (1988).
16.
go back to reference Horák P., Pike D.A., Raines M.E.: Hamilton cycles in block-intersection graphs of triple systems. J. Comb. Des. 7, 243–246 (1999). Horák P., Pike D.A., Raines M.E.: Hamilton cycles in block-intersection graphs of triple systems. J. Comb. Des. 7, 243–246 (1999).
17.
go back to reference Jesso A.T., Pike D.A., Shalaby N.: Hamilton cycles in restricted block-intersection graphs. Des. Codes Cryptogr. 61, 345–353 (2011). Jesso A.T., Pike D.A., Shalaby N.: Hamilton cycles in restricted block-intersection graphs. Des. Codes Cryptogr. 61, 345–353 (2011).
18.
go back to reference Jiang T.: Planar Hamiltonian chordal graphs are cycle extendable. Discret. Math. 257, 441–444 (2002). Jiang T.: Planar Hamiltonian chordal graphs are cycle extendable. Discret. Math. 257, 441–444 (2002).
19.
go back to reference Karp R.M.: Reducibility among combinatorial problems. In: Proceedings of Symposium on the Complexity of Computer Applications, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, pp. 85–103. Plenum, New York (1972). Karp R.M.: Reducibility among combinatorial problems. In: Proceedings of Symposium on the Complexity of Computer Applications, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, pp. 85–103. Plenum, New York (1972).
20.
go back to reference Lafond M., Seamone B.: Hamiltonian chordal graphs are not cycle extendible. SIAM J. Discret. Math. 29(2), 877–887 (2015). Lafond M., Seamone B.: Hamiltonian chordal graphs are not cycle extendible. SIAM J. Discret. Math. 29(2), 877–887 (2015).
21.
go back to reference Luther R.D., Pike D.A.: Cycle extensions in PBD block-intersection graphs. Ars Combinatoria (in press). Luther R.D., Pike D.A.: Cycle extensions in PBD block-intersection graphs. Ars Combinatoria (in press).
22.
go back to reference Mamut A., Pike D.A., Raines M.E.: Pancyclic BIBD block-intersection graphs. Discret. Math. 284, 205–208 (2004). Mamut A., Pike D.A., Raines M.E.: Pancyclic BIBD block-intersection graphs. Discret. Math. 284, 205–208 (2004).
23.
go back to reference Nash-Williams C.St.J.A.: Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency. In: Mirsky L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971). Nash-Williams C.St.J.A.: Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency. In: Mirsky L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971).
Metadata
Title
Hamiltonicity and cycle extensions in 0-block-intersection graphs of balanced incomplete block designs
Authors
Jason T. LeGrow
David A. Pike
Jonathan Poulin
Publication date
01-09-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2016
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-015-0110-6

Other articles of this Issue 3/2016

Designs, Codes and Cryptography 3/2016 Go to the issue

Premium Partner