Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2016

01.09.2016

Hamiltonicity and cycle extensions in 0-block-intersection graphs of balanced incomplete block designs

verfasst von: Jason T. LeGrow, David A. Pike, Jonathan Poulin

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A cycle \(\mathscr {C}\) in a graph \(G\) is called extendable if there is another cycle in \(G\) which contains all the vertices of \(\mathscr {C}\) and exactly one other vertex. A graph \(G\) is cycle extendable if all its non-Hamilton cycles are extendable. A balanced incomplete block design with parameters \(v\), \(k\), and \(\lambda \), written BIBD\( (v, k, \lambda ) \), is a pair \(\mathscr {D}= (V, \mathscr {B})\) of sets, where \(V\) is a set of \(v\) elements and \(\mathscr {B}\) is a set of \(k\)-subsets of \(V\)—called blocks—such that each pair of elements of \(V\) appears in exactly \(\lambda \) blocks in \(\mathscr {B}\). The 0-block-intersection graph of a design \(\mathscr {D}= (V, \mathscr {B})\) is the graph \(\overline{G}_\mathscr {D}\) whose vertex set is \(\mathscr {B}\) and in which two blocks are adjacent if and only if they do not intersect. An \(A_1'\) cyclic ordering of a BIBD\( (v, k, \lambda )\) is a listing of the elements of its block set such that consecutive blocks do not intersect and the last block does not intersect the first—such an ordering corresponds to a Hamilton cycle in the 0-block-intersection graph of the design and to a 0-intersecting Gray code for the design, and vice versa. In this paper we demonstrate that if \(\overline{G}_\mathscr {D}\) is the 0-block-intersection graph of \(\mathscr {D}\), a BIBD\( (v, k, \lambda )\), then \(\overline{G}_\mathscr {D}\) is Hamiltonian if \(\lambda =1\) and \(v > \left( \frac{1+\sqrt{5}}{2}\right) k^2+k\), and cycle extendable if \(v > 2k^2+1\). We also present a polynomial-time algorithm for finding cycles of any length in the 0-block-intersection graph of a BIBD\( (v, k, \lambda ) \) with \(v > (2+\sqrt{3})k^2+1\) if \(\lambda =1\) or \(v > 5k^2+1\) if \(\lambda \geqslant 2\).
Literatur
1.
Zurück zum Zitat Abueida A.A., Pike D.A.: Cycle extensions in BIBD block-intersection graphs. J. Comb. Des. 21, 303–310 (2013). Abueida A.A., Pike D.A.: Cycle extensions in BIBD block-intersection graphs. J. Comb. Des. 21, 303–310 (2013).
2.
Zurück zum Zitat Abueida A.A., Sritharan R.: Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discret. Math. 20(3), 669–681 (2006). Abueida A.A., Sritharan R.: Cycle extendability and Hamiltonian cycles in chordal graph classes. SIAM J. Discret. Math. 20(3), 669–681 (2006).
3.
Zurück zum Zitat Alspach B., Hare D.: Edge-pancyclic block-intersection graphs. Discret. Math. 97, 17–24 (1991). Alspach B., Hare D.: Edge-pancyclic block-intersection graphs. Discret. Math. 97, 17–24 (1991).
4.
Zurück zum Zitat Alspach B., Heinrich K., Mohar B.: A note on Hamilton cycles in block-intersection graphs. Finite Geom. Comb. Des.-Contemp. Math. 111, 1–4 (1990). Alspach B., Heinrich K., Mohar B.: A note on Hamilton cycles in block-intersection graphs. Finite Geom. Comb. Des.-Contemp. Math. 111, 1–4 (1990).
5.
Zurück zum Zitat Case G.A., Pike D.A.: Pancyclic PBD block-intersection graphs. Discret. Math. 308, 896–900 (2008). Case G.A., Pike D.A.: Pancyclic PBD block-intersection graphs. Discret. Math. 308, 896–900 (2008).
6.
Zurück zum Zitat Chen G., Faudree R.J., Gould R.J., Jacobson M.S.: Cycle extendability of Hamiltonian interval graphs. SIAM J. Discret. Math. 20(3), 682–689 (2006). Chen G., Faudree R.J., Gould R.J., Jacobson M.S.: Cycle extendability of Hamiltonian interval graphs. SIAM J. Discret. Math. 20(3), 682–689 (2006).
7.
Zurück zum Zitat Chvátal V., Erdős P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972). Chvátal V., Erdős P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972).
8.
Zurück zum Zitat Cohen M.B., Colbourn C.J.: Optimal and pessimal orderings of Steiner triple systems in disk arrays. Theor. Comput. Sci. 297, 103–117 (2003). Cohen M.B., Colbourn C.J.: Optimal and pessimal orderings of Steiner triple systems in disk arrays. Theor. Comput. Sci. 297, 103–117 (2003).
9.
Zurück zum Zitat Dewar M., Stevens B.: Ordering Block Designs: Gray Codes, Universal Cycles, and Configuration Orderings. Springer, New York (2012). Dewar M., Stevens B.: Ordering Block Designs: Gray Codes, Universal Cycles, and Configuration Orderings. Springer, New York (2012).
10.
Zurück zum Zitat Dirac G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22, 61–85 (1960). Dirac G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22, 61–85 (1960).
11.
Zurück zum Zitat Fisher R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10, 52–75 (1940). Fisher R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10, 52–75 (1940).
12.
Zurück zum Zitat Ford L.R., Fulkerson D.R.: Maximal flow through graphs. Can. J. Math. 8, 399–404 (1956). Ford L.R., Fulkerson D.R.: Maximal flow through graphs. Can. J. Math. 8, 399–404 (1956).
13.
Zurück zum Zitat Hare D.R.: Cycles in the block-intersection graph of pairwise balanced designs. Discret. Math. 137, 211–221 (1995). Hare D.R.: Cycles in the block-intersection graph of pairwise balanced designs. Discret. Math. 137, 211–221 (1995).
14.
Zurück zum Zitat Hendry G.R.T.: Extending cycles in graphs. Discret. Math. 85, 59–72 (1990). Hendry G.R.T.: Extending cycles in graphs. Discret. Math. 85, 59–72 (1990).
15.
Zurück zum Zitat Horák P., Rosa A.: Decomposing Steiner triple systems into small configurations. Ars Comb. 26, 91–105 (1988). Horák P., Rosa A.: Decomposing Steiner triple systems into small configurations. Ars Comb. 26, 91–105 (1988).
16.
Zurück zum Zitat Horák P., Pike D.A., Raines M.E.: Hamilton cycles in block-intersection graphs of triple systems. J. Comb. Des. 7, 243–246 (1999). Horák P., Pike D.A., Raines M.E.: Hamilton cycles in block-intersection graphs of triple systems. J. Comb. Des. 7, 243–246 (1999).
17.
Zurück zum Zitat Jesso A.T., Pike D.A., Shalaby N.: Hamilton cycles in restricted block-intersection graphs. Des. Codes Cryptogr. 61, 345–353 (2011). Jesso A.T., Pike D.A., Shalaby N.: Hamilton cycles in restricted block-intersection graphs. Des. Codes Cryptogr. 61, 345–353 (2011).
18.
Zurück zum Zitat Jiang T.: Planar Hamiltonian chordal graphs are cycle extendable. Discret. Math. 257, 441–444 (2002). Jiang T.: Planar Hamiltonian chordal graphs are cycle extendable. Discret. Math. 257, 441–444 (2002).
19.
Zurück zum Zitat Karp R.M.: Reducibility among combinatorial problems. In: Proceedings of Symposium on the Complexity of Computer Applications, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, pp. 85–103. Plenum, New York (1972). Karp R.M.: Reducibility among combinatorial problems. In: Proceedings of Symposium on the Complexity of Computer Applications, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, pp. 85–103. Plenum, New York (1972).
20.
Zurück zum Zitat Lafond M., Seamone B.: Hamiltonian chordal graphs are not cycle extendible. SIAM J. Discret. Math. 29(2), 877–887 (2015). Lafond M., Seamone B.: Hamiltonian chordal graphs are not cycle extendible. SIAM J. Discret. Math. 29(2), 877–887 (2015).
21.
Zurück zum Zitat Luther R.D., Pike D.A.: Cycle extensions in PBD block-intersection graphs. Ars Combinatoria (in press). Luther R.D., Pike D.A.: Cycle extensions in PBD block-intersection graphs. Ars Combinatoria (in press).
22.
Zurück zum Zitat Mamut A., Pike D.A., Raines M.E.: Pancyclic BIBD block-intersection graphs. Discret. Math. 284, 205–208 (2004). Mamut A., Pike D.A., Raines M.E.: Pancyclic BIBD block-intersection graphs. Discret. Math. 284, 205–208 (2004).
23.
Zurück zum Zitat Nash-Williams C.St.J.A.: Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency. In: Mirsky L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971). Nash-Williams C.St.J.A.: Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency. In: Mirsky L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971).
Metadaten
Titel
Hamiltonicity and cycle extensions in 0-block-intersection graphs of balanced incomplete block designs
verfasst von
Jason T. LeGrow
David A. Pike
Jonathan Poulin
Publikationsdatum
01.09.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2016
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-015-0110-6

Weitere Artikel der Ausgabe 3/2016

Designs, Codes and Cryptography 3/2016 Zur Ausgabe

Premium Partner