Skip to main content
Top
Published in: Rare Metals 2/2023

28-06-2016

Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons

Authors: Liang Sun, Kuo-She Li, Hong-Wei Li, Dun-Bo Yu, Yang Luo, Jin-Ling Jin, Shuo Lu, Ning-Tao Quan

Published in: Rare Metals | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Melt-spun Y16Fe78B6 ribbons were prepared by the melt-spinning technique with pure elements Y, Fe and Fe–B alloy in argon. The ribbons are mainly composed of Y2Fe14B, YFe2 and α-Fe phases. Amorphous phase appears at the wheel velocity of >35 m·s−1. For the ribbons prepared at optimum wheel velocity and heat treatments, the coercivity, remanence and maximum energy product are 239.5 kA·m−1, 0.61 T and 32.7 kJ·m−3, respectively. By an investigation of Henkel plots of ribbons, it is found that intergrain exchange coupling leads to the enhancement of remanence. The coercivity mechanism of ribbons prepared at 35 m·s−1 is mainly controlled by inhomogeneous pinning of domain walls. The phase component and magnetic properties change with annealing temperature and time. The optimum magnetic properties are obtained with the ribbon quenched at 35 m·s−1 and annealed at 700 °C for 10 min.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Coehoorn R, De Mooij DB, De Waard CD. Meltspun permanent magnet materials containing Fe3B as the main phase. J Magn Magn Mater. 1989;80(1):101.CrossRef Coehoorn R, De Mooij DB, De Waard CD. Meltspun permanent magnet materials containing Fe3B as the main phase. J Magn Magn Mater. 1989;80(1):101.CrossRef
[2]
go back to reference Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn. 1991;27(4):3588.CrossRef Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn. 1991;27(4):3588.CrossRef
[3]
go back to reference Hadjipanayis GC. Nanophase hard magnets. J Magn Magn Mater. 1999;200(1):373.CrossRef Hadjipanayis GC. Nanophase hard magnets. J Magn Magn Mater. 1999;200(1):373.CrossRef
[4]
go back to reference Li ZB, Zhang M, Shen BG, Sun JR. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.CrossRef Li ZB, Zhang M, Shen BG, Sun JR. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.CrossRef
[5]
go back to reference Li ZB, Shen BG, Niu E, Sun JR. Nucleation of reversed domain and pinning effect on domain wall motion in nanocomposite magnets. Appl Phys Lett. 2013;103(6):062405.CrossRef Li ZB, Shen BG, Niu E, Sun JR. Nucleation of reversed domain and pinning effect on domain wall motion in nanocomposite magnets. Appl Phys Lett. 2013;103(6):062405.CrossRef
[6]
go back to reference Stoner EC. A mechanism of magnetic hysterisis in heterogenous alloys. Trans Roy Soc. 1948;240(826):599. Stoner EC. A mechanism of magnetic hysterisis in heterogenous alloys. Trans Roy Soc. 1948;240(826):599.
[7]
go back to reference Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets. Phys Rev B. 1993;48(21):15812.CrossRef Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets. Phys Rev B. 1993;48(21):15812.CrossRef
[8]
go back to reference Qu H, Li J. Remanence enhancement in magnetically interacting particles. Phys Rev B. 2003;68(21):212402.CrossRef Qu H, Li J. Remanence enhancement in magnetically interacting particles. Phys Rev B. 2003;68(21):212402.CrossRef
[9]
go back to reference Li ZB, Zhang M, Wang LC, Shen BG, Zhang XF, Li YF, Hu FX, Sun JR. Investigation on intergranular exchange coupling effect in Pr9Fe85.5B5.5 ribbons. Appl Phys Lett. 2014;104(5):052406.CrossRef Li ZB, Zhang M, Wang LC, Shen BG, Zhang XF, Li YF, Hu FX, Sun JR. Investigation on intergranular exchange coupling effect in Pr9Fe85.5B5.5 ribbons. Appl Phys Lett. 2014;104(5):052406.CrossRef
[10]
go back to reference Zhang M, Ren WJ, Zhang ZD, Sun XK, Liu W, Geng DY, Zhao XG, Grössinger R, Triyono D. Magnetic properties and exchange coupling of nanocomposite (Nd, Y)2Fe14B/α-Fe. J Appl Phys. 2003;94(4):2602.CrossRef Zhang M, Ren WJ, Zhang ZD, Sun XK, Liu W, Geng DY, Zhao XG, Grössinger R, Triyono D. Magnetic properties and exchange coupling of nanocomposite (Nd, Y)2Fe14B/α-Fe. J Appl Phys. 2003;94(4):2602.CrossRef
[11]
go back to reference Coey JMD, Givord D, Liénard A, Rebouillat JP. Amorphous yttrium–iron alloys. I. Magnetic properties. J Phys F: Met Phys. 1981;11(12):2707.CrossRef Coey JMD, Givord D, Liénard A, Rebouillat JP. Amorphous yttrium–iron alloys. I. Magnetic properties. J Phys F: Met Phys. 1981;11(12):2707.CrossRef
[12]
go back to reference Kronmüller H, Durst K-D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J Magn Magn Mater. 1988;74(3):291.CrossRef Kronmüller H, Durst K-D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J Magn Magn Mater. 1988;74(3):291.CrossRef
[13]
go back to reference Tang W, Dennis KW, Wu YQ, Kramer MJ, Anderson IE, McCallum RW. Studies of new YDy-based R2Fe14B magnets for high temperature performance (R = Y+Dy + Nd). IEEE Trans Magn. 2004;40(4):2907.CrossRef Tang W, Dennis KW, Wu YQ, Kramer MJ, Anderson IE, McCallum RW. Studies of new YDy-based R2Fe14B magnets for high temperature performance (R = Y+Dy + Nd). IEEE Trans Magn. 2004;40(4):2907.CrossRef
[14]
go back to reference Itoh T, Hikosaka K, Takahashi H, Ukai T, Mori N. Anisotropy energies for Y2Fe14B and Nd2Fe14B. J Appl Phys. 1987;61(8):3430.CrossRef Itoh T, Hikosaka K, Takahashi H, Ukai T, Mori N. Anisotropy energies for Y2Fe14B and Nd2Fe14B. J Appl Phys. 1987;61(8):3430.CrossRef
[15]
go back to reference Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49(9):6100.CrossRef Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49(9):6100.CrossRef
[16]
go back to reference Liu YC, Li HW, Li KS, Jing JL, Luo Y, Quan NT. Magnetic properties optimization of nanocomposite Nd9Fe85B6 magnets by controlling microstructure of as-quenched ribbons. Rare Met. 2014;33(3):299.CrossRef Liu YC, Li HW, Li KS, Jing JL, Luo Y, Quan NT. Magnetic properties optimization of nanocomposite Nd9Fe85B6 magnets by controlling microstructure of as-quenched ribbons. Rare Met. 2014;33(3):299.CrossRef
Metadata
Title
Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons
Authors
Liang Sun
Kuo-She Li
Hong-Wei Li
Dun-Bo Yu
Yang Luo
Jin-Ling Jin
Shuo Lu
Ning-Tao Quan
Publication date
28-06-2016
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 2/2023
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0750-3

Other articles of this Issue 2/2023

Rare Metals 2/2023 Go to the issue

Premium Partners