Skip to main content
Top
Published in: Wood Science and Technology 5/2022

02-09-2022 | Original

Hardness and fracture morphology of reaction wood from Pinus merkusii and Agathis loranthifolia

Authors: Byantara Darsan Purusatama, Fauzi Febrianto, Seung Hwan Lee, Nam Hun Kim

Published in: Wood Science and Technology | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aimed to evaluate and compare the fracture morphology in hardness test of compression (CW), lateral (LW), and opposite woods (OW) of Pinus merkusii and Agathis loranthifolia growing in Indonesia. The hardness of the transverse, radial, and tangential surfaces was examined using Brinell’s method, according to the Korean standard. The fracture surfaces of hardness tested samples were observed by scanning electron and optical microscopy. On all surfaces from both species, CW showed the highest hardness, and no significant differences were detected between LW and OW. On the transverse surface, CW of P. merkusii showed brittle-fractured cell wall, while that of A. loranthifolia displayed smooth cell wall. CW of both species showed intercellular and intrawall failures and a narrow lumen opening. LW of both species and OW of P. merkusii showed folded earlywood tracheids with a crack, whereas in the latewood of P. merkusii, LW and OW displayed smooth cell wall and a narrow lumen opening. OW of A. loranthifolia showed collapsed cell wall. On the radial surface, CW of both species showed buckling tracheids in the tangential direction. LW and OW of both species exhibited shortening earlywood tracheids with folded cell walls, while LW and OW of P. merkusii exhibited buckling latewood tracheids in the radial direction. On the tangential surface, buckling tracheids occurred near the fractured rays in all parts of both species. In conclusion, CW exhibited distinctive hardness and fracture morphologies compared with LW and OW in P. merkusii and A. loranthifolia; in addition, hardness and fracture morphology differed between the two species.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akande JA, Kyanka GH (1990) Evaluation of tensile fracture in aspen using fractographic and theoretical methods. Wood Fiber Sci 22:283–297 Akande JA, Kyanka GH (1990) Evaluation of tensile fracture in aspen using fractographic and theoretical methods. Wood Fiber Sci 22:283–297
go back to reference Ameen MS (1995) Fractography: fracture topography as a tool in fracture mechanics and stress analysis. An introduction. Geol Soc Spec Publ 92:1–10CrossRef Ameen MS (1995) Fractography: fracture topography as a tool in fracture mechanics and stress analysis. An introduction. Geol Soc Spec Publ 92:1–10CrossRef
go back to reference Boone RS, Chudnoff M (1972) Compression wood formation and other characteristics of plantation-grown Pinus caribaea. Rio Pedras, Puerto Rico: USDA Forest Service Research Paper. Inst Trop for 13:1–16 Boone RS, Chudnoff M (1972) Compression wood formation and other characteristics of plantation-grown Pinus caribaea. Rio Pedras, Puerto Rico: USDA Forest Service Research Paper. Inst Trop for 13:1–16
go back to reference Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163 Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163
go back to reference Delorme A, Verhoff S (1975) Zellwanddeformationen in sturmgeschädigtem Fichtenholz unter dem Rasterelektronenmikroskop. (Cell wall deformations in Norway spruce due to damage from storm, as revealed by scanning electron microscopy). Holz Roh- Werkst 33:456–460. https://doi.org/10.1007/BF0277010CrossRef Delorme A, Verhoff S (1975) Zellwanddeformationen in sturmgeschädigtem Fichtenholz unter dem Rasterelektronenmikroskop. (Cell wall deformations in Norway spruce due to damage from storm, as revealed by scanning electron microscopy). Holz Roh- Werkst 33:456–460. https://​doi.​org/​10.​1007/​BF0277010CrossRef
go back to reference Dinwoodie JM (1976) Causes of brashness in timber. Leiden Bot Ser 3:238–252 Dinwoodie JM (1976) Causes of brashness in timber. Leiden Bot Ser 3:238–252
go back to reference Eom YG, Butterfield BG (1997) Anatomical comparisons of compression, opposite, and lateral woods in New Zealand radiata pine (Pinus radiata D. Don). J Korean Wood Sci Technol 25(2):88–99 Eom YG, Butterfield BG (1997) Anatomical comparisons of compression, opposite, and lateral woods in New Zealand radiata pine (Pinus radiata D. Don). J Korean Wood Sci Technol 25(2):88–99
go back to reference Eom YG, Butterfield BG (2001) Anatomical comparison of compression, opposite, and lateral woods in New Zealand rimu (Dacrydium cupressinum Lamb.). J Korean Wood Sci Technol 29(3):1–13 Eom YG, Butterfield BG (2001) Anatomical comparison of compression, opposite, and lateral woods in New Zealand rimu (Dacrydium cupressinum Lamb.). J Korean Wood Sci Technol 29(3):1–13
go back to reference Furuno T, Saiki H, Harada H (1969) Ultrastructural feature of compression wood tracheids stressed to tensile failure. J Jpn Wood Res Soc 15:104–108 Furuno T, Saiki H, Harada H (1969) Ultrastructural feature of compression wood tracheids stressed to tensile failure. J Jpn Wood Res Soc 15:104–108
go back to reference Gryc V, Horáček P (2007) Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood. J for Sci 53(3):129–137CrossRef Gryc V, Horáček P (2007) Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood. J for Sci 53(3):129–137CrossRef
go back to reference Hannrup B, Danell Ö, Ekberg I, Moëll M (2001) Relationships between wood density and tracheid dimensions in Pinus sylvestris L. Wood Fiber Sci 33:173–181 Hannrup B, Danell Ö, Ekberg I, Moëll M (2001) Relationships between wood density and tracheid dimensions in Pinus sylvestris L. Wood Fiber Sci 33:173–181
go back to reference Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine. (Pinus sylvestris L.). Holz Roh Werkst 58:91–95CrossRef Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine. (Pinus sylvestris L.). Holz Roh Werkst 58:91–95CrossRef
go back to reference Huang Y, Fei B, Yu Y, Wang S, Shi Z, Zhao R (2012) Modulus of elasticity and hardness of compression and opposite wood cell walls of masson pine. BioResources 7(3):3028–3037 Huang Y, Fei B, Yu Y, Wang S, Shi Z, Zhao R (2012) Modulus of elasticity and hardness of compression and opposite wood cell walls of masson pine. BioResources 7(3):3028–3037
go back to reference Kienholz R (1930) The wood structure of a “pistol-butted” mountain hemlock. Am J Bot 17(8):739–764CrossRef Kienholz R (1930) The wood structure of a “pistol-butted” mountain hemlock. Am J Bot 17(8):739–764CrossRef
go back to reference KS F 2198 (2016) Determination of density and specific gravity of wood. KSA, Korean Standards Association, Seoul KS F 2198 (2016) Determination of density and specific gravity of wood. KSA, Korean Standards Association, Seoul
go back to reference KS F 2212 (2020) Method of hardness test for wood. KSA, Korean Standards Association, Seoul KS F 2212 (2020) Method of hardness test for wood. KSA, Korean Standards Association, Seoul
go back to reference Kučera LJ, Bariska M (1982) On the fracture morphology in wood. Wood Sci Technol 16(4):241–259CrossRef Kučera LJ, Bariska M (1982) On the fracture morphology in wood. Wood Sci Technol 16(4):241–259CrossRef
go back to reference Martawijaya A, Kartasujana I, Kadir K, Prawira SA (2005) Atlas Kayu Indonesia Jilid I, 3rd edn. Pusat Penelitian dan Pengambangan Hasil Hutan, Bogor (in Indonesian) Martawijaya A, Kartasujana I, Kadir K, Prawira SA (2005) Atlas Kayu Indonesia Jilid I, 3rd edn. Pusat Penelitian dan Pengambangan Hasil Hutan, Bogor (in Indonesian)
go back to reference Mikkola MT, Korhonen RK (2013) Effect of latewood proportion on mechanical properties of Finnish pine wood modified with compression drying. Wood Fiber Sci 45(4):335–342 Mikkola MT, Korhonen RK (2013) Effect of latewood proportion on mechanical properties of Finnish pine wood modified with compression drying. Wood Fiber Sci 45(4):335–342
go back to reference Nugroho N, Surjokusumo S (2002) Agathis loranthifolia an excellent structure material for wooden aircraft. In: Proceedings of the 7th World Conference on Timber Engineering, Shah Alam, Malaysia, vol 2, pp 370–376 Nugroho N, Surjokusumo S (2002) Agathis loranthifolia an excellent structure material for wooden aircraft. In: Proceedings of the 7th World Conference on Timber Engineering, Shah Alam, Malaysia, vol 2, pp 370–376
go back to reference Onaka F (1949) Studies on compression and tension wood. Wood Research. Bull Wood Res Inst Kyoto Univ Jpn 24(3):1–88 Onaka F (1949) Studies on compression and tension wood. Wood Research. Bull Wood Res Inst Kyoto Univ Jpn 24(3):1–88
go back to reference Pandit IKN, Rahayu IS (2007) Ultra structure of compression wood of Agathis (Agathis loranthifolia Salisb.) and its relation to physical properties. Jurnal Ilmu Dan Teknologi Kayu Tropis 5(1):1–6 (in Indonesian) Pandit IKN, Rahayu IS (2007) Ultra structure of compression wood of Agathis (Agathis loranthifolia Salisb.) and its relation to physical properties. Jurnal Ilmu Dan Teknologi Kayu Tropis 5(1):1–6 (in Indonesian)
go back to reference Park S, Saiki H, Harada H (1979) Structure of branch wood in akamatsu (Pinus densiflora Sieb. et Zucc.)(1). Distribution of compression wood, structure of annual ring and tracheid dimensions. Mem Coll Agric Kyoto Univ 25(5):311–317 Park S, Saiki H, Harada H (1979) Structure of branch wood in akamatsu (Pinus densiflora Sieb. et Zucc.)(1). Distribution of compression wood, structure of annual ring and tracheid dimensions. Mem Coll Agric Kyoto Univ 25(5):311–317
go back to reference Pillow MY, Luxford RF (1937) Structure, occurrence and properties of compression wood. US Dept Agr Tech Bull 546:1–32 Pillow MY, Luxford RF (1937) Structure, occurrence and properties of compression wood. US Dept Agr Tech Bull 546:1–32
go back to reference Saiki H, Furukawa I, Harada H (1972) An observation on tensile fracture of wood by scanning electron microscope. Bull Kyoto Univ Forest 43:309–319 Saiki H, Furukawa I, Harada H (1972) An observation on tensile fracture of wood by scanning electron microscope. Bull Kyoto Univ Forest 43:309–319
go back to reference Tarmian A, Azadfallah M (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood. BioResources 4(1):194–204 Tarmian A, Azadfallah M (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood. BioResources 4(1):194–204
go back to reference Timell TE (1982) Recent progress in the chemistry and topochemistry of compression wood. Wood Sci Technol 16:83–122CrossRef Timell TE (1982) Recent progress in the chemistry and topochemistry of compression wood. Wood Sci Technol 16:83–122CrossRef
go back to reference Wardrop AB (1951) Cell wall organization and the properties of xylem. Aust J Sci Res 3(1):1–13 Wardrop AB (1951) Cell wall organization and the properties of xylem. Aust J Sci Res 3(1):1–13
Metadata
Title
Hardness and fracture morphology of reaction wood from Pinus merkusii and Agathis loranthifolia
Authors
Byantara Darsan Purusatama
Fauzi Febrianto
Seung Hwan Lee
Nam Hun Kim
Publication date
02-09-2022
Publisher
Springer Berlin Heidelberg
Published in
Wood Science and Technology / Issue 5/2022
Print ISSN: 0043-7719
Electronic ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-022-01413-x

Other articles of this Issue 5/2022

Wood Science and Technology 5/2022 Go to the issue