Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2021

16-01-2021 | Research Article-Chemical Engineering

Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy

Authors: Gaik Eng Loo, Lee Muei Chng, Swee Pin Yeap, JitKang Lim, Derek Juinn Chieh Chan, Sim Siong Leong, Pey Yi Toh

Published in: Arabian Journal for Science and Engineering | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microalgae bio-treatment of synthetic fertilizer wastewater is particularly attractive due to their photosynthetic capabilities. Microalgae tend to convert solar energy into useful biomass, incorporating with the nutrients that present in wastewater, such as nitrogen and phosphorus. However, harvesting of microalgae remains a challenge because of the small size (3–30 μm) of microalgae cells and the repulsion between the negatively charged microalgae cells maintains a stable cell suspension. Magnetic-aided-embedding-flocculation strategy, which is one-step method by mixing microalgae, magnetic particles and flocculant together, is proposed for microalgae harvesting in order to meet cost and time effectiveness. In this study, the optimum cell separation efficiency of Chlorella vulgaris microalgae above 96% at 5 mg/L of chitosan dosage is achieved. With the aid of iron oxide particles, either micro- or nano-size, the sedimentation rate of cell flocs up to 250 cm/h is obtained when 10 mg/L of iron oxide is embedded into the cell flocs. The sedimentation rate with the embedding of iron oxide shows about 2 times faster than that of without magnetic particles. This strategy had proven effective for the polishing of the pretreated synthetic fertilizer wastewater by removing up to 53%, 74% and 70% of ortho-phosphate, nitrate and ammoniacal nitrogen, respectively. In addition, the presence of iron oxide particles and chitosan in microalgae harvesting that showed no adverse effect toward the quantity and quality of extracted lipid. This strategy is proven feasible for fertilizer wastewater treatment and biodiesel production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sundaramoorthy, P.; Kunchithapatam, J.; Thamizhiniyan, P.; Venkateslu, V.: Effect of fertilizer factory effluent on germination and seedling growth of groundnut varieties. J. Ecobiol. 13, 3–8 (2001) Sundaramoorthy, P.; Kunchithapatam, J.; Thamizhiniyan, P.; Venkateslu, V.: Effect of fertilizer factory effluent on germination and seedling growth of groundnut varieties. J. Ecobiol. 13, 3–8 (2001)
2.
go back to reference Singh, P.P.; Mall, M.; Singh, J.: Impact of fertilizer factory effluent on seed germination, seedling growth and chlorophyll content of gram (Cicer aeritenum). J. Environ. Biol. 27, 153–156 (2006) Singh, P.P.; Mall, M.; Singh, J.: Impact of fertilizer factory effluent on seed germination, seedling growth and chlorophyll content of gram (Cicer aeritenum). J. Environ. Biol. 27, 153–156 (2006)
3.
go back to reference Abou-Elela, S.I.; El-Kamah, H.M.; Abou-Taleb, E.: Chemical treatment of wastewater from fertilizer industry. Sci. J. Fac. Sci. Menoufia Univ. 6, 267–289 (1992) Abou-Elela, S.I.; El-Kamah, H.M.; Abou-Taleb, E.: Chemical treatment of wastewater from fertilizer industry. Sci. J. Fac. Sci. Menoufia Univ. 6, 267–289 (1992)
4.
go back to reference Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.: Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19, 257–275 (2012)CrossRef Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.: Microalgae and wastewater treatment. Saudi J. Biol. Sci. 19, 257–275 (2012)CrossRef
5.
go back to reference Chen, G.; Zhao, L.; Qi, Y.; Cui, Y.L.: Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook. J. Nanomater. 2014, 1–9 (2014)CrossRef Chen, G.; Zhao, L.; Qi, Y.; Cui, Y.L.: Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook. J. Nanomater. 2014, 1–9 (2014)CrossRef
6.
go back to reference Gudin, C.; Therpenier, C.: Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Process. 6, 73–110 (1986) Gudin, C.; Therpenier, C.: Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Process. 6, 73–110 (1986)
7.
go back to reference Seo, J.Y.; Praveenkumar, R.; Kim, B.; Seo, J.; Park, J.; Na, J.; Jeon, S.G.; Park, S.B.; Lee, K.; Oh, Y.: Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chem. 18, 3981–3989 (2016)CrossRef Seo, J.Y.; Praveenkumar, R.; Kim, B.; Seo, J.; Park, J.; Na, J.; Jeon, S.G.; Park, S.B.; Lee, K.; Oh, Y.: Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chem. 18, 3981–3989 (2016)CrossRef
8.
go back to reference Brennan, L.; Owende, P.: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)CrossRef Brennan, L.; Owende, P.: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)CrossRef
9.
go back to reference Brostow, W.; Pal, S.; Singh, R.P.: A model of flocculation. Mater. Lett. 61, 4381–4384 (2007)CrossRef Brostow, W.; Pal, S.; Singh, R.P.: A model of flocculation. Mater. Lett. 61, 4381–4384 (2007)CrossRef
10.
go back to reference Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T.: Harvesting of microalgae by flocculation. Fermentation 4, 93 (2018)CrossRef Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T.: Harvesting of microalgae by flocculation. Fermentation 4, 93 (2018)CrossRef
11.
go back to reference Napan, K.; Christianson, T.; Voie, K.; Quinn, J.C.: Quantitative assessment of microalgae biomass and lipid stability post-cultivation. Front. Energy Res. 3, 15 (2015)CrossRef Napan, K.; Christianson, T.; Voie, K.; Quinn, J.C.: Quantitative assessment of microalgae biomass and lipid stability post-cultivation. Front. Energy Res. 3, 15 (2015)CrossRef
12.
go back to reference Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C.Z.: A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol. 102, 10047–10051 (2011)CrossRef Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C.Z.: A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour. Technol. 102, 10047–10051 (2011)CrossRef
13.
go back to reference Hu, Y.R.; Wang, F.; Wang, S.K.; Liu, C.Z.; Guo, C.: Efficient harvesting of marine microalgae Nannochloropsis maritime using magnetic nanoparticles. Bioresour. Technol. 138, 387–390 (2013)CrossRef Hu, Y.R.; Wang, F.; Wang, S.K.; Liu, C.Z.; Guo, C.: Efficient harvesting of marine microalgae Nannochloropsis maritime using magnetic nanoparticles. Bioresour. Technol. 138, 387–390 (2013)CrossRef
14.
go back to reference Mathimani, T.; Mallick, N.: A comprehensive review on harvesting of microalgae for biodiesel: key challenges and future directions. Renew. Sustain. Energy 91, 1103–1120 (2018)CrossRef Mathimani, T.; Mallick, N.: A comprehensive review on harvesting of microalgae for biodiesel: key challenges and future directions. Renew. Sustain. Energy 91, 1103–1120 (2018)CrossRef
15.
go back to reference Yeap, S.P.; Ahmad, A.L.; Ooi, B.S.; Lim, J.: Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28, 14878–14891 (2012)CrossRef Yeap, S.P.; Ahmad, A.L.; Ooi, B.S.; Lim, J.: Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28, 14878–14891 (2012)CrossRef
16.
go back to reference Yeap, S.P.; Lim, J.; Ooi, B.S.; Ahmad, A.L.: Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J. Nanoparticle Res. 19, 368 (2017)CrossRef Yeap, S.P.; Lim, J.; Ooi, B.S.; Ahmad, A.L.: Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J. Nanoparticle Res. 19, 368 (2017)CrossRef
17.
go back to reference Lim, J.; Yeap, S.P.; Low, S.C.: Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 123, 171–174 (2014)CrossRef Lim, J.; Yeap, S.P.; Low, S.C.: Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 123, 171–174 (2014)CrossRef
18.
go back to reference Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.K.: Optimization of microalgae coagulation process using chitosan. Chem. Eng. J. 173, 879–882 (2011)CrossRef Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.K.: Optimization of microalgae coagulation process using chitosan. Chem. Eng. J. 173, 879–882 (2011)CrossRef
19.
go back to reference Wong, L.: Flocculation technology: double layer flocculation to enhance the sedimentation of freshwater microalgae. B. Degree, Universiti Tunku Abdul Rahman, (2016) Wong, L.: Flocculation technology: double layer flocculation to enhance the sedimentation of freshwater microalgae. B. Degree, Universiti Tunku Abdul Rahman, (2016)
20.
go back to reference Low, Y.J.; Lau, S.W.: Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. IOP Conf. Ser. Mater. Sci. Eng. 206, 012073 (2017)CrossRef Low, Y.J.; Lau, S.W.: Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. IOP Conf. Ser. Mater. Sci. Eng. 206, 012073 (2017)CrossRef
21.
go back to reference Tan, K.Y.; Ong, C.L.; Chng, L.M.; Lim, J.; Chan, D.J.C.; Toh, P.Y.: Fishpond water treatment: removal of microalgae from fishpond wastewater through embedding-flocculation and sedimentation. AIP Conf. Proc. 2157, 020007 (2019)CrossRef Tan, K.Y.; Ong, C.L.; Chng, L.M.; Lim, J.; Chan, D.J.C.; Toh, P.Y.: Fishpond water treatment: removal of microalgae from fishpond wastewater through embedding-flocculation and sedimentation. AIP Conf. Proc. 2157, 020007 (2019)CrossRef
22.
go back to reference Wu, X.; Ge, X.; Wang, D.; Tang, H.: Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf. A. 305, 89–96 (2007)CrossRef Wu, X.; Ge, X.; Wang, D.; Tang, H.: Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf. A. 305, 89–96 (2007)CrossRef
23.
go back to reference Roussy, J.; Van Vooren, M.; Dempsey, B.A.; Guibal, E.: Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Res. 39, 3247–3258 (2005)CrossRef Roussy, J.; Van Vooren, M.; Dempsey, B.A.; Guibal, E.: Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Res. 39, 3247–3258 (2005)CrossRef
24.
go back to reference Lucas, I.T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P.: Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J. Phys. Chem. C 111, 18568–18576 (2007)CrossRef Lucas, I.T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P.: Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J. Phys. Chem. C 111, 18568–18576 (2007)CrossRef
25.
go back to reference Xu, X.Q.; Shen, H.; Xu, J.R.; Xie, M.Q.; Li, X.J.: The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl. Surf. Sci. 253, 2158–2164 (2006)CrossRef Xu, X.Q.; Shen, H.; Xu, J.R.; Xie, M.Q.; Li, X.J.: The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate. Appl. Surf. Sci. 253, 2158–2164 (2006)CrossRef
26.
go back to reference Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.K.: Magnetophoretic separation of Chlorella sp.: role of cationic polymer binder. Process Saf. Environ. Prot. 92, 515–521 (2014)CrossRef Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.K.: Magnetophoretic separation of Chlorella sp.: role of cationic polymer binder. Process Saf. Environ. Prot. 92, 515–521 (2014)CrossRef
27.
go back to reference Toh, P.Y.; Ng, B.W.; Chong, C.H.; Ahmad, A.L.; Yang, J.W.; Chan, D.J.C.; Lim, J.: Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 4, 4114–4121 (2014)CrossRef Toh, P.Y.; Ng, B.W.; Chong, C.H.; Ahmad, A.L.; Yang, J.W.; Chan, D.J.C.; Lim, J.: Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 4, 4114–4121 (2014)CrossRef
28.
go back to reference Wu, W.; He, Q.; Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef Wu, W.; He, Q.; Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef
29.
go back to reference Toh, P.Y.; Chai, C.C.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.: Effect of the colloidal stability of SF-IONPs on the performance of magnetophoretic separation of microalgae. AIP Conf. Proc. 1828, 020004 (2017)CrossRef Toh, P.Y.; Chai, C.C.; Ahmad, A.L.; Chan, D.J.C.; Lim, J.: Effect of the colloidal stability of SF-IONPs on the performance of magnetophoretic separation of microalgae. AIP Conf. Proc. 1828, 020004 (2017)CrossRef
30.
go back to reference Mathieu, J.B.; Martel, S.: Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magn. Reson. Med. 63, 1336–1345 (2010)CrossRef Mathieu, J.B.; Martel, S.: Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magn. Reson. Med. 63, 1336–1345 (2010)CrossRef
31.
go back to reference Faraudo, J.; Andreu, J.S.; Camacho, J.: Understand diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter. 9, 6654–6664 (2013)CrossRef Faraudo, J.; Andreu, J.S.; Camacho, J.: Understand diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter. 9, 6654–6664 (2013)CrossRef
32.
go back to reference Leong, S.S.; Ahmad, Z.; Camacho, J.; Faraudo, J.; Lim, J.: Kinetics of low field gradient magnetophoresis in the presence of magnetically induced convection. J. Phy. Chem. 121, 5389–5407 (2017) Leong, S.S.; Ahmad, Z.; Camacho, J.; Faraudo, J.; Lim, J.: Kinetics of low field gradient magnetophoresis in the presence of magnetically induced convection. J. Phy. Chem. 121, 5389–5407 (2017)
33.
go back to reference Chang, Q.: Chapter 3: sedimentation. In: Chang, Q. (Ed.) Colloid and interface Chemistry for water quality control, pp. 23–35. Academic Press, Cambridge (2016)CrossRef Chang, Q.: Chapter 3: sedimentation. In: Chang, Q. (Ed.) Colloid and interface Chemistry for water quality control, pp. 23–35. Academic Press, Cambridge (2016)CrossRef
34.
go back to reference Leong, S.S.; Yeap, S.P.; Lim, J.: Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interface Focus. 6, 20160048 (2016)CrossRef Leong, S.S.; Yeap, S.P.; Lim, J.: Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interface Focus. 6, 20160048 (2016)CrossRef
35.
go back to reference Prochazkova, G.; Safarik, I.; Branyik, T.: Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour. Technol. 130, 472–477 (2013)CrossRef Prochazkova, G.; Safarik, I.; Branyik, T.: Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour. Technol. 130, 472–477 (2013)CrossRef
36.
go back to reference Markeb, A.A.; Llimos-Turet, J.; Ferrer, I.; Blanquez, P.; Alonso, A.; Sanchez, A.; Moral-Vico, J.; Font, X.: The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 159, 490–500 (2019)CrossRef Markeb, A.A.; Llimos-Turet, J.; Ferrer, I.; Blanquez, P.; Alonso, A.; Sanchez, A.; Moral-Vico, J.; Font, X.: The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 159, 490–500 (2019)CrossRef
37.
go back to reference Fraga-Garcia, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S.: Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behaviour to process realization. Nanomaterials 8, 292 (2018)CrossRef Fraga-Garcia, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S.: Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behaviour to process realization. Nanomaterials 8, 292 (2018)CrossRef
38.
go back to reference Barhoumi, L.; Dewez, D.: Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed. Res. Int. 2013, 1–11 (2013)CrossRef Barhoumi, L.; Dewez, D.: Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed. Res. Int. 2013, 1–11 (2013)CrossRef
39.
go back to reference Toh, P.Y.; Tai, W.Y.; Ahmad, A.L.; Lim, J.; Chan, D.J.C.: Toxicity of bare and surface functionalized iron oxide nanoparticles towards microalgae. Int. J. Phytoremediat. 18, 643–650 (2016)CrossRef Toh, P.Y.; Tai, W.Y.; Ahmad, A.L.; Lim, J.; Chan, D.J.C.: Toxicity of bare and surface functionalized iron oxide nanoparticles towards microalgae. Int. J. Phytoremediat. 18, 643–650 (2016)CrossRef
40.
go back to reference Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Stoller, M.; Martinez-Ferez, A.: On the effect of pH and operating conditions on nanofiltration of two-phase olive mill wastewater. Chem. Eng. Trans. 47, 397–402 (2016) Ochando-Pulido, J.M.; Victor-Ortega, M.D.; Stoller, M.; Martinez-Ferez, A.: On the effect of pH and operating conditions on nanofiltration of two-phase olive mill wastewater. Chem. Eng. Trans. 47, 397–402 (2016)
41.
go back to reference Chung, Y.C.; Li, Y.H.; Chen, C.C.: Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J. Environ. Sci. Health Part A 40, 1775–1790 (2005)CrossRef Chung, Y.C.; Li, Y.H.; Chen, C.C.: Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J. Environ. Sci. Health Part A 40, 1775–1790 (2005)CrossRef
42.
go back to reference Jozwiak, T.; Mielcarek, A.; Janczukowicz, W.; Rodziewicz, J.; Majkowska-Gadomska, J.; Chojnowska, M.: Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ. Sci. Pollut. Res. 25, 18484–18497 (2018)CrossRef Jozwiak, T.; Mielcarek, A.; Janczukowicz, W.; Rodziewicz, J.; Majkowska-Gadomska, J.; Chojnowska, M.: Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ. Sci. Pollut. Res. 25, 18484–18497 (2018)CrossRef
43.
go back to reference Jozwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A.: Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. Arab. J. Chem. 12, 4104–4117 (2019)CrossRef Jozwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A.: Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. Arab. J. Chem. 12, 4104–4117 (2019)CrossRef
44.
go back to reference Mat Yasin, N.H.; Shafei, N.I.; Rushan, N.H.; Sepian, N.R.A.; Said, F.M.: The effect of microalgae harvesting on lipid for biodiesel production. Mater. Today Proc. 19, 1582–1590 (2019)CrossRef Mat Yasin, N.H.; Shafei, N.I.; Rushan, N.H.; Sepian, N.R.A.; Said, F.M.: The effect of microalgae harvesting on lipid for biodiesel production. Mater. Today Proc. 19, 1582–1590 (2019)CrossRef
45.
go back to reference Gutierrez, R.; Passos, F.; Ferrer, I.; Uggetti, E.; Garcia, J.: Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res. 9, 204–211 (2015)CrossRef Gutierrez, R.; Passos, F.; Ferrer, I.; Uggetti, E.; Garcia, J.: Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res. 9, 204–211 (2015)CrossRef
46.
go back to reference Blockx, J.; Verfaillie, A.; Thielemans, W.; Muylaert, K.: Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sust. Chem. Eng. 6, 11273–11279 (2018)CrossRef Blockx, J.; Verfaillie, A.; Thielemans, W.; Muylaert, K.: Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sust. Chem. Eng. 6, 11273–11279 (2018)CrossRef
47.
go back to reference Zhu, L.; Li, Z.; Hiltunen, E.: Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 11, 183 (2018)CrossRef Zhu, L.; Li, Z.; Hiltunen, E.: Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 11, 183 (2018)CrossRef
48.
go back to reference Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.: Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. J. Environ. Technol. 35, 2244–2253 (2014)CrossRef Ahmad, A.L.; Mat Yasin, N.H.; Chan, D.J.C.; Lim, J.: Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. J. Environ. Technol. 35, 2244–2253 (2014)CrossRef
49.
go back to reference Ahmad, F.; Khan, A.U.; Yasar, A.: The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Botany. 45, 461–465 (2013) Ahmad, F.; Khan, A.U.; Yasar, A.: The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Botany. 45, 461–465 (2013)
50.
go back to reference Prommuak, C.; Pravasant, P.; Quitain, A.T.; Goto, M.; Shotipruk, A.: Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng. J. 16, 157–166 (2012)CrossRef Prommuak, C.; Pravasant, P.; Quitain, A.T.; Goto, M.; Shotipruk, A.: Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng. J. 16, 157–166 (2012)CrossRef
51.
go back to reference Mathimani, T.; Uma, L.; Prabaharan, D.: Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 198, 575–586 (2018)CrossRef Mathimani, T.; Uma, L.; Prabaharan, D.: Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 198, 575–586 (2018)CrossRef
Metadata
Title
Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy
Authors
Gaik Eng Loo
Lee Muei Chng
Swee Pin Yeap
JitKang Lim
Derek Juinn Chieh Chan
Sim Siong Leong
Pey Yi Toh
Publication date
16-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05317-5

Other articles of this Issue 7/2021

Arabian Journal for Science and Engineering 7/2021 Go to the issue

Premium Partners