Skip to main content
Top

2011 | OriginalPaper | Chapter

2. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials

Author : C. Austen Angell

Published in: Glassy, Amorphous and Nano-Crystalline Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The glassy state problem is often separated into two major components [1, 2]. One of these concerns the reasons that glasses form in the first place, and deals with the circumstance that glasses are usually metastable with respect to crystals so that crystallization must be avoided. The second deals with the question of how liquids behave when crystals do not form, and it is with this component that we are concerned in this chapter. Here the central phenomenon with which we must deal, in seeking to understand vitrification, is the heat capacity function and the change in that function that accompanies the freezing in of the disordered state. This phenomenon is illustrated in Fig. 2.1 for a typical molecular liquid, 2-pentene vitrified by both liquid cooling and by vapor deposition [3].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Debenedetti PG (1976) Metastable liquids: concepts and principles. Princeton University Press, Princeton, NJ Debenedetti PG (1976) Metastable liquids: concepts and principles. Princeton University Press, Princeton, NJ
2.
go back to reference Angell CA (2008) Glassformers and viscous liquid slowdown since David Turnbull: enduring puzzles and new twists (text of Turnbull lecture). MRS Bull 33:545–555CrossRef Angell CA (2008) Glassformers and viscous liquid slowdown since David Turnbull: enduring puzzles and new twists (text of Turnbull lecture). MRS Bull 33:545–555CrossRef
3.
go back to reference Takeda K, Yamamuro O, Oguni M, Suga H (1995) Calorimetric study on structural relaxation of 1-pentene in vapor-deposited and liquid-quenched glassy states. J Phys Chem 99:1602–1607CrossRef Takeda K, Yamamuro O, Oguni M, Suga H (1995) Calorimetric study on structural relaxation of 1-pentene in vapor-deposited and liquid-quenched glassy states. J Phys Chem 99:1602–1607CrossRef
4.
go back to reference Angell CA (2008) Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319:582–587CrossRef Angell CA (2008) Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319:582–587CrossRef
5.
go back to reference Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267CrossRef Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267CrossRef
6.
go back to reference Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935CrossRef Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935CrossRef
7.
go back to reference Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169CrossRef Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169CrossRef
8.
go back to reference Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRef Adam G, Gibbs JH (1965) On temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRef
9.
go back to reference Dyre JC, Olsen NB, Christensen T (1996) Local expansion model for viscous-flow activation energies of glassforming molecular liquids. Phys Rev B 53:2171–2174CrossRef Dyre JC, Olsen NB, Christensen T (1996) Local expansion model for viscous-flow activation energies of glassforming molecular liquids. Phys Rev B 53:2171–2174CrossRef
10.
go back to reference Moynihan CT, Angell CA (2000) Bond lattice or excitation model analysis of the configurational entropy of molecular liquids. J Non-Cryst Solids 274:131–138CrossRef Moynihan CT, Angell CA (2000) Bond lattice or excitation model analysis of the configurational entropy of molecular liquids. J Non-Cryst Solids 274:131–138CrossRef
11.
go back to reference Angell CA, Rao KJ (1972) Configurational excitations in condensed matter and the bond lattice model for the liquid-glass transition. J Chem Phys 57:470–481CrossRef Angell CA, Rao KJ (1972) Configurational excitations in condensed matter and the bond lattice model for the liquid-glass transition. J Chem Phys 57:470–481CrossRef
12.
go back to reference Saika-Voivod I, Sciortino F, Poole PH (2004). Free energy and configurational entropy of liquid silica: fragile-to-strong crossover and polyamorphism. Phys Rev E 69:041503(13) Saika-Voivod I, Sciortino F, Poole PH (2004). Free energy and configurational entropy of liquid silica: fragile-to-strong crossover and polyamorphism. Phys Rev E 69:041503(13)
13.
go back to reference Faupel F, Frank W, Macht MP, Mehrer H, Naundorf V, Ratzke K, Schober HR, Sharma SK, Teichler H (2003) Diffusion in metallic glasses and supercooled melts. Rev Mod Phys 75:237–280CrossRef Faupel F, Frank W, Macht MP, Mehrer H, Naundorf V, Ratzke K, Schober HR, Sharma SK, Teichler H (2003) Diffusion in metallic glasses and supercooled melts. Rev Mod Phys 75:237–280CrossRef
14.
go back to reference Fujimori H, Oguni M (1995) Correlation index (Tga-Tgb)/Tg and activation energy ratio as parameters characterising the structure of liquid and glass. Solid State Commun 94:157–162CrossRef Fujimori H, Oguni M (1995) Correlation index (Tga-Tgb)/Tg and activation energy ratio as parameters characterising the structure of liquid and glass. Solid State Commun 94:157–162CrossRef
15.
go back to reference Fujimori H, Oguni M (1993) Construction of an adiabatic calorimeter at low temperatures and the glass transition of crystalline 2-bromothiophene. J Phys Chem Solids 54:271–280CrossRef Fujimori H, Oguni M (1993) Construction of an adiabatic calorimeter at low temperatures and the glass transition of crystalline 2-bromothiophene. J Phys Chem Solids 54:271–280CrossRef
16.
go back to reference Fujita H, Fujimori HO, Oguni M (1995) Glass transitions in the stable crystalline state of dibenzofuran and fluorene. J Chem Thermodyn 27:927–938CrossRef Fujita H, Fujimori HO, Oguni M (1995) Glass transitions in the stable crystalline state of dibenzofuran and fluorene. J Chem Thermodyn 27:927–938CrossRef
17.
go back to reference Matsuo T, Suga H, David WIF, Ibberson RM, Bernier P, Zahab A, Fabre C, Rassat A, Dworkin A (1992) The heat-capacity of solid C-60. Solid State Commun 83:711–715CrossRef Matsuo T, Suga H, David WIF, Ibberson RM, Bernier P, Zahab A, Fabre C, Rassat A, Dworkin A (1992) The heat-capacity of solid C-60. Solid State Commun 83:711–715CrossRef
18.
go back to reference Moriya K, Matsuo T, Suga H (1983) Phase transitions and freezing of ion disorder in CsNO2 and TlNO2 crystals. J Phys Chem Solids 44:1103–1119CrossRef Moriya K, Matsuo T, Suga H (1983) Phase transitions and freezing of ion disorder in CsNO2 and TlNO2 crystals. J Phys Chem Solids 44:1103–1119CrossRef
19.
go back to reference Wales DJ (2003) Energy landscapes, Cambridge molecular science series. Cambridge University Press, Cambridge Wales DJ (2003) Energy landscapes, Cambridge molecular science series. Cambridge University Press, Cambridge
20.
go back to reference Brand R, Loidl A, Lunkenheimer P (2002) Relaxation dynamics in plastic crystals. J Chem Phys 116:10386–10401CrossRef Brand R, Loidl A, Lunkenheimer P (2002) Relaxation dynamics in plastic crystals. J Chem Phys 116:10386–10401CrossRef
21.
go back to reference Mizuno F, Belieres J-P, Kuwata N, Pradel A, Ribes M, Angell CA (2006) Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes. J Non-Cryst Solids 352:5147–5155CrossRef Mizuno F, Belieres J-P, Kuwata N, Pradel A, Ribes M, Angell CA (2006) Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes. J Non-Cryst Solids 352:5147–5155CrossRef
22.
go back to reference Richet P, Bottinga YD, Denielou L, Petitiet JP, Tegui C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639CrossRef Richet P, Bottinga YD, Denielou L, Petitiet JP, Tegui C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639CrossRef
23.
go back to reference Scheidler P, Kob W, Latz A, Horbach J, Binder K (2005) Frequency-dependent specific heat of viscous silica. Phys Rev B 63:104204(14) Scheidler P, Kob W, Latz A, Horbach J, Binder K (2005) Frequency-dependent specific heat of viscous silica. Phys Rev B 63:104204(14)
24.
go back to reference van Beest BWH, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958CrossRef van Beest BWH, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958CrossRef
25.
go back to reference Vollmayr K, Kob W (1996) Investigating the cooling rate dependence of amorphous silica: a computer simulation study. Ber. bunsenges. Phys Chem 100:1399–1401 Vollmayr K, Kob W (1996) Investigating the cooling rate dependence of amorphous silica: a computer simulation study. Ber. bunsenges. Phys Chem 100:1399–1401
26.
go back to reference Tamura S, Yokokawa T, Niwa K (1975) The enthalpy of beryllium fluoride from 456 to 1083 K by transposed-temperature drop calorimetry. J Chem Thermodyn 7:633CrossRef Tamura S, Yokokawa T, Niwa K (1975) The enthalpy of beryllium fluoride from 456 to 1083 K by transposed-temperature drop calorimetry. J Chem Thermodyn 7:633CrossRef
27.
28.
go back to reference Hemmati M, Moynihan CT, Angell CA (2001) Interpretation of the molten BeF2 viscosity anomaly in terms of a high temperature density maximum, and other waterlike features. J Chem Phys 115:6663–6671CrossRef Hemmati M, Moynihan CT, Angell CA (2001) Interpretation of the molten BeF2 viscosity anomaly in terms of a high temperature density maximum, and other waterlike features. J Chem Phys 115:6663–6671CrossRef
29.
go back to reference Privalko Y (1980) Excess entropies and related quantities in glass-forming liquids. J Phys Chem 84:3307–3312CrossRef Privalko Y (1980) Excess entropies and related quantities in glass-forming liquids. J Phys Chem 84:3307–3312CrossRef
30.
go back to reference Alba C, Busse LE, List DJ, Angell CA (1990) Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons. J Chem Phys 92:617–624CrossRef Alba C, Busse LE, List DJ, Angell CA (1990) Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons. J Chem Phys 92:617–624CrossRef
31.
go back to reference Angell CA, Bressel RD (1972) Fluidity and conductance in aqueous electrolyte solutions. An approach from the high concentration limit. I. Ca(NO3)2 solutions. J Phys Chem 76:3244–3252CrossRef Angell CA, Bressel RD (1972) Fluidity and conductance in aqueous electrolyte solutions. An approach from the high concentration limit. I. Ca(NO3)2 solutions. J Phys Chem 76:3244–3252CrossRef
32.
go back to reference Matyushov D, Angell CA (2007) Gaussian excitations model for glassformer thermodynamics and dynamics. J Chem Phys 126:094501(19) Matyushov D, Angell CA (2007) Gaussian excitations model for glassformer thermodynamics and dynamics. J Chem Phys 126:094501(19)
33.
go back to reference Martinez L-M, Angell CA (2001) A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–667CrossRef Martinez L-M, Angell CA (2001) A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–667CrossRef
34.
go back to reference Huang D-H, McKenna GB (2001) New insights into the fragility dilemma in liquids. J Chem Phys 114:5621–5630CrossRef Huang D-H, McKenna GB (2001) New insights into the fragility dilemma in liquids. J Chem Phys 114:5621–5630CrossRef
35.
go back to reference Wunderlich B (1960) Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem 64:1052–1056CrossRef Wunderlich B (1960) Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem 64:1052–1056CrossRef
36.
go back to reference Moynihan CT, Angell CA (2000) Bond lattice or excitation model analysis of the configurational entropy of molecular liquids. J Non-Cryst Solids 274:131–138CrossRef Moynihan CT, Angell CA (2000) Bond lattice or excitation model analysis of the configurational entropy of molecular liquids. J Non-Cryst Solids 274:131–138CrossRef
37.
go back to reference Stevenson JD, Wolynes PG (2005) Thermodynamic-kinetic correlations in supercooled liquids: critical survey of experimental data and predictions of the random first order transition theory of glasses. J Phys Chem B 109:15093–15097CrossRef Stevenson JD, Wolynes PG (2005) Thermodynamic-kinetic correlations in supercooled liquids: critical survey of experimental data and predictions of the random first order transition theory of glasses. J Phys Chem B 109:15093–15097CrossRef
38.
go back to reference Saika-Voivod I, Poole PH, Sciortino F (2001) Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412:514–517CrossRef Saika-Voivod I, Poole PH, Sciortino F (2001) Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412:514–517CrossRef
39.
go back to reference Whalley E, Klug DD, Handa YP (1989) Entropy of amorphous ice. Nature 342:782–783CrossRef Whalley E, Klug DD, Handa YP (1989) Entropy of amorphous ice. Nature 342:782–783CrossRef
40.
go back to reference Speedy RJ, Debenedetti PG, Smith RS, Huang C, Kay BD (1996) The evaporation rate, free energy, and entropy of amorphous water at 150 K. J Chem Phys 105:240–244CrossRef Speedy RJ, Debenedetti PG, Smith RS, Huang C, Kay BD (1996) The evaporation rate, free energy, and entropy of amorphous water at 150 K. J Chem Phys 105:240–244CrossRef
41.
go back to reference Sastry S, Angell CA (2003) Liquid–liquid phase transition in supercooled liquid silicon. Nat Mater 2:739–743CrossRef Sastry S, Angell CA (2003) Liquid–liquid phase transition in supercooled liquid silicon. Nat Mater 2:739–743CrossRef
42.
go back to reference Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase-behavior of metastable water. Nature 360:324–328CrossRef Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase-behavior of metastable water. Nature 360:324–328CrossRef
43.
go back to reference Tanaka H (2002) Simple view of water-like anomalies of atomic liquids with directional bonding. Phys Rev B 66:064202(8) Tanaka H (2002) Simple view of water-like anomalies of atomic liquids with directional bonding. Phys Rev B 66:064202(8)
44.
go back to reference Brovchenko I, Geiger A, Oleinikova A (2005) Liquid–liquid phase transitions in supercooled water studied by computer simulations of various water models. J Chem Phys 123:044515(16) Brovchenko I, Geiger A, Oleinikova A (2005) Liquid–liquid phase transitions in supercooled water studied by computer simulations of various water models. J Chem Phys 123:044515(16)
45.
go back to reference Poole PH, Sciortino F, Grande T, Stanley HE, Angell CA (1994) Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys Rev Lett 73:1632–1635CrossRef Poole PH, Sciortino F, Grande T, Stanley HE, Angell CA (1994) Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys Rev Lett 73:1632–1635CrossRef
46.
47.
go back to reference Wagner W, Pruss A (2002) The IWAPS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRef Wagner W, Pruss A (2002) The IWAPS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535CrossRef
48.
go back to reference Kaya S, Sato H (1943) Superstructuring in the iron–cobalt system and their magnetic properties. Proc Physico-Math Soc Japan 25:261–273 Kaya S, Sato H (1943) Superstructuring in the iron–cobalt system and their magnetic properties. Proc Physico-Math Soc Japan 25:261–273
49.
go back to reference Yue YZ (2004) Influence of physical ageing on the excessive heat capacity of hyperquenched silicate glass fibres. J Non-Cryst Solids 348:72–77CrossRef Yue YZ (2004) Influence of physical ageing on the excessive heat capacity of hyperquenched silicate glass fibres. J Non-Cryst Solids 348:72–77CrossRef
50.
go back to reference Angell CA, Yuanzheng Y, Wang L, Copley JRD, Borick S, Mossa S (2003) J Phys cond Matt 15: S1051–S1068 Angell CA, Yuanzheng Y, Wang L, Copley JRD, Borick S, Mossa S (2003) J Phys cond Matt 15: S1051–S1068
51.
go back to reference Xu L-M, Buldyrev SV, Giovambattista N, Angell CA, Stanley HE (2009) A monatomic system with a liquid–liquid critical point and two glassy states. J Chem Phys 130:054505(12) Xu L-M, Buldyrev SV, Giovambattista N, Angell CA, Stanley HE (2009) A monatomic system with a liquid–liquid critical point and two glassy states. J Chem Phys 130:054505(12)
52.
go back to reference Buldyrev SV, Malesio G, Angell CA, Giovambattista N, Prestipino S, Saija F, Stanley HE, Xu L (2009) Unusual phase behavior of one-component systems with two-scale isotropic interactions. J Phys Condens Mat 21:504106(18) Buldyrev SV, Malesio G, Angell CA, Giovambattista N, Prestipino S, Saija F, Stanley HE, Xu L (2009) Unusual phase behavior of one-component systems with two-scale isotropic interactions. J Phys Condens Mat 21:504106(18)
53.
go back to reference Xu L, Buldyrev SV, Angell CA, Stanley HE (2006) Thermodynamics and dynamics of the two-scale spherically-symmetric Jagla model of anomalous liquids. Phys Rev E 74:031108(10) Xu L, Buldyrev SV, Angell CA, Stanley HE (2006) Thermodynamics and dynamics of the two-scale spherically-symmetric Jagla model of anomalous liquids. Phys Rev E 74:031108(10)
54.
go back to reference Jagla EA (1998) Phase behavior of a system of particles with core collapse. Phys Rev E 58:1478–1486CrossRef Jagla EA (1998) Phase behavior of a system of particles with core collapse. Phys Rev E 58:1478–1486CrossRef
55.
go back to reference Angell CA (2008) Glass formation and glass transition in supercooled liquids, with insights from study of related phenomena in crystals. J Non-Cryst Solids 354:4703–4712CrossRef Angell CA (2008) Glass formation and glass transition in supercooled liquids, with insights from study of related phenomena in crystals. J Non-Cryst Solids 354:4703–4712CrossRef
56.
go back to reference Mizukami M, Kobashi K, Hanaya M, Oguni M (1999) Presence of two freezing-in processes concerning a-glass transition in the new liquid phase of tri-phenylphosphite. J Phys Chem B 103:4078–4088CrossRef Mizukami M, Kobashi K, Hanaya M, Oguni M (1999) Presence of two freezing-in processes concerning a-glass transition in the new liquid phase of tri-phenylphosphite. J Phys Chem B 103:4078–4088CrossRef
57.
go back to reference Aasland S, Mcmillan PF (1994) Density-driven liquid–liquid phase-separation in the system Al2O3-Y2O3. Nature 369:633–636CrossRef Aasland S, Mcmillan PF (1994) Density-driven liquid–liquid phase-separation in the system Al2O3-Y2O3. Nature 369:633–636CrossRef
58.
go back to reference Bhat H, Molinero V, Soignard E, Solomon VC, Sastry S, Yarger JL, Angell CA (2007) Vitrification of a monatomic metallic liquid. Nature 448:787–790CrossRef Bhat H, Molinero V, Soignard E, Solomon VC, Sastry S, Yarger JL, Angell CA (2007) Vitrification of a monatomic metallic liquid. Nature 448:787–790CrossRef
59.
go back to reference Loerting T, Winkel K, KohlI (submitted for publication: private communication) 2010 Loerting T, Winkel K, KohlI (submitted for publication: private communication) 2010
60.
go back to reference Sakaguchi S, Todoroki S-I (1998) Rayleigh scattering of silica core optical fiber after heat treatment. Appl Opt 37:7708–7711CrossRef Sakaguchi S, Todoroki S-I (1998) Rayleigh scattering of silica core optical fiber after heat treatment. Appl Opt 37:7708–7711CrossRef
61.
go back to reference Mondal P, Lunkenheimer P, Boehmer R, Loidl A, Gugenberger F, Adelmann P, Meingast C (1994) Dielectric relaxation dynamics in C-60 and C-70. J Non-Cryst Solids 172:468–471CrossRef Mondal P, Lunkenheimer P, Boehmer R, Loidl A, Gugenberger F, Adelmann P, Meingast C (1994) Dielectric relaxation dynamics in C-60 and C-70. J Non-Cryst Solids 172:468–471CrossRef
62.
go back to reference Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon RJ, Wu T, Yu L, Ediger MD (2007) Organic glasses with exceptional thermodynamic stability and kinetic stability. Science 315:354–356CrossRef Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon RJ, Wu T, Yu L, Ediger MD (2007) Organic glasses with exceptional thermodynamic stability and kinetic stability. Science 315:354–356CrossRef
63.
go back to reference Ishii K, Nakayama H, Hirabayashi S, Moriyama R (2008) Anomalously high-density glass of ethylbenzene prepared by vapor deposition at temperatures close to the glass-transition temperature. Chem Phys Lett 459:109–112CrossRef Ishii K, Nakayama H, Hirabayashi S, Moriyama R (2008) Anomalously high-density glass of ethylbenzene prepared by vapor deposition at temperatures close to the glass-transition temperature. Chem Phys Lett 459:109–112CrossRef
64.
go back to reference Kearns KL, Ediger MD, Huth H, Schick C (2010) One micrometer length scale controls kinetic stability of low energy glasses. J Phys Chem Lett 1:388–392CrossRef Kearns KL, Ediger MD, Huth H, Schick C (2010) One micrometer length scale controls kinetic stability of low energy glasses. J Phys Chem Lett 1:388–392CrossRef
65.
go back to reference Dupuy J, Chieux P, Calemzuk R, Jal JF, Ferradou C, Wright A, Angell CA (1982) Controlled nucleation and quasi-ordered growth of ice crystals from low temperature electrolyte solutions: a small angle neutron scattering study. Nature 296:138–140CrossRef Dupuy J, Chieux P, Calemzuk R, Jal JF, Ferradou C, Wright A, Angell CA (1982) Controlled nucleation and quasi-ordered growth of ice crystals from low temperature electrolyte solutions: a small angle neutron scattering study. Nature 296:138–140CrossRef
66.
go back to reference Mishima O (2007) Phase separation in dilute LiCl–H2O solution related to the polyamorphism of liquid water. J Chem Phys 126:244507(5) Mishima O (2007) Phase separation in dilute LiCl–H2O solution related to the polyamorphism of liquid water. J Chem Phys 126:244507(5)
Metadata
Title
Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials
Author
C. Austen Angell
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-2882-2_2

Premium Partners