Skip to main content
Top

2011 | OriginalPaper | Chapter

3. Vibration Forms in the Vicinity of Glass Transition, Structural Changes and the Creation of Voids When Assuming the Role of Polarizability

Authors : Jaroslav Šesták, Bořivoj Hlaváček, Pavel Hubík, Jiří J. Mareš

Published in: Glassy, Amorphous and Nano-Crystalline Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Under the certain so called critical temperature [1], the liquid phase becomes factually prearranged and separated into solid-like structures. Certain unoccupied vacancies existing within the space are called voids (in the obvious meaning of opening, hollowness or cavity) and are packed with gas-like molecules (so called “wanderers”). This realism has been known for a long time [2]. Some of the modern structural theories (such as the so called “mode coupling theory” – MCT, which is describing the structural phenomena of liquid state at lower temperatures) are also based on a similar scheme of the local density fluctuation [3]. Such a conjecture of heterogeneities in liquid phase goes back to the assumption of semi-crystalline phase published early by Kauzman [4], as well as to the assumptions of coexistence of gas–liquid semi-structures [5,6] as related to numerous works of Cohen, Grest and Turnbull [7–10].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, New York Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, New York
2.
go back to reference Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquid Wiley, New York, pp 122, 291 Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquid Wiley, New York, pp 122, 291
3.
go back to reference Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquid. Rep Prog Phys 55:241–376CrossRef Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquid. Rep Prog Phys 55:241–376CrossRef
4.
go back to reference Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRef Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRef
5.
go back to reference Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Calorim 80:271–283CrossRef Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Calorim 80:271–283CrossRef
6.
go back to reference Hlaváček B, Mareš JJ (2008) In: Šesták J (ed) Fyzika struktur amorfních a krystalických materiálů (Physics of Strutures of Amorphous and Crystalline Materials). Publ. House Pardubice University, Pardubice Hlaváček B, Mareš JJ (2008) In: Šesták J (ed) Fyzika struktur amorfních a krystalických materiálů (Physics of Strutures of Amorphous and Crystalline Materials). Publ. House Pardubice University, Pardubice
7.
go back to reference Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169; Turnbull D, Cohen MH (1961) Free‐volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125 Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169; Turnbull D, Cohen MH (1961) Free‐volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125
8.
go back to reference Turnbull D (1965) Free volume model of the liquid state. In: Hughel TJ (ed) Liquids: structure, properties and solid interaction. Elsevier, Amsterdam, pp 6–24 Turnbull D (1965) Free volume model of the liquid state. In: Hughel TJ (ed) Liquids: structure, properties and solid interaction. Elsevier, Amsterdam, pp 6–24
9.
go back to reference Cohen MH, Grest GS (1979) Liquid–glass transition, a free-volume approach. Phys Rev B 20:1077–1098, 21, 4113 (1980)CrossRef Cohen MH, Grest GS (1979) Liquid–glass transition, a free-volume approach. Phys Rev B 20:1077–1098, 21, 4113 (1980)CrossRef
10.
go back to reference Grest GS, Cohen MH (1981) In: Prigogine I, Rice ST (eds) Advances in chemical physics, vol XLVII. Wiley, New York, pp 455–525CrossRef Grest GS, Cohen MH (1981) In: Prigogine I, Rice ST (eds) Advances in chemical physics, vol XLVII. Wiley, New York, pp 455–525CrossRef
11.
go back to reference Hlaváček B, Šesták J (2000) Vibration perception of Tg transition. In: Proceedings of the first slovak glass conference. Slovak Glass Society, Trenčín, pp 168–172 Hlaváček B, Šesták J (2000) Vibration perception of Tg transition. In: Proceedings of the first slovak glass conference. Slovak Glass Society, Trenčín, pp 168–172
12.
go back to reference Hlaváček B, Křesálek V, Souček J (1997) The anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRef Hlaváček B, Křesálek V, Souček J (1997) The anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRef
13.
go back to reference Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity of Tg transition. J Therm Anal Calorim 67:239CrossRef Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity of Tg transition. J Therm Anal Calorim 67:239CrossRef
14.
go back to reference Jackle J (1986) Theory of glass transitions. New thoughts about old facts. Phil Mag 56:113–127CrossRef Jackle J (1986) Theory of glass transitions. New thoughts about old facts. Phil Mag 56:113–127CrossRef
15.
16.
go back to reference Piccireli R, Litowitz TA (1957) Ultrasonic shear and compressional relaxation in liquid glycerol. J Acoust Soc Am 29:1009CrossRef Piccireli R, Litowitz TA (1957) Ultrasonic shear and compressional relaxation in liquid glycerol. J Acoust Soc Am 29:1009CrossRef
17.
go back to reference Allen VR, Fox TG (1964) Viscosity–molecular weight dependence for short chain polystyrene. J Chem Phys 41:337CrossRef Allen VR, Fox TG (1964) Viscosity–molecular weight dependence for short chain polystyrene. J Chem Phys 41:337CrossRef
18.
go back to reference Allen VR, Fox TG (1964) Dependence of the zero shear melt viscosity and related friction coefficient and critical chain length on measurable characteristics of chain polymers. J Chem Phys 41:344CrossRef Allen VR, Fox TG (1964) Dependence of the zero shear melt viscosity and related friction coefficient and critical chain length on measurable characteristics of chain polymers. J Chem Phys 41:344CrossRef
19.
go back to reference Schulz J (1974) Polymer material science. Prentice-Hall, Englewood Cliffs, p 337 Schulz J (1974) Polymer material science. Prentice-Hall, Englewood Cliffs, p 337
20.
go back to reference Ferry JD (1961) Viscoelastic properties of polymers. Wiley, New York, p 225 Ferry JD (1961) Viscoelastic properties of polymers. Wiley, New York, p 225
21.
go back to reference Bueche F (1956) Viscosity of polymers in concentrated solution. J Chem Phys 20:599–600CrossRef Bueche F (1956) Viscosity of polymers in concentrated solution. J Chem Phys 20:599–600CrossRef
22.
go back to reference Tobolsky AV (1960) Properties and structure of polymers. Wiley, New York, p 75 Tobolsky AV (1960) Properties and structure of polymers. Wiley, New York, p 75
23.
go back to reference Aklonis JJ, MacKnight WJ, Shen M (1972) Introduction to polymer viscoelasticity. Wiley-Interscience, New York, p 42 Aklonis JJ, MacKnight WJ, Shen M (1972) Introduction to polymer viscoelasticity. Wiley-Interscience, New York, p 42
24.
go back to reference Wunderlich B, Baur H (1970) Heat capacities of linear high polymers. Springer, Berlin Wunderlich B, Baur H (1970) Heat capacities of linear high polymers. Springer, Berlin
25.
go back to reference Wunderlich B (1960) Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Chem Phys 64:1052–1056CrossRef Wunderlich B (1960) Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Chem Phys 64:1052–1056CrossRef
26.
go back to reference Buchenau U, Zorn M (1993) A relation between fast and slow motions in glassy and liquid selenium. Europhys Lett 18:523–528CrossRef Buchenau U, Zorn M (1993) A relation between fast and slow motions in glassy and liquid selenium. Europhys Lett 18:523–528CrossRef
27.
go back to reference Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294CrossRef Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294CrossRef
28.
go back to reference Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and Tg transition. J Polym Eng 17:111–137CrossRef Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and Tg transition. J Polym Eng 17:111–137CrossRef
29.
go back to reference Surovtsev NV, Wiederich J, Batalov AE, Novikov VN, Ramos MA (2004) Inelastic light scattering in B2O3 glasses with different thermal histories. J Phys Condens Matter 16:223CrossRef Surovtsev NV, Wiederich J, Batalov AE, Novikov VN, Ramos MA (2004) Inelastic light scattering in B2O3 glasses with different thermal histories. J Phys Condens Matter 16:223CrossRef
30.
go back to reference Novikov VN, Ding Y, Sokolov AP (2005) Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys Rev E 71:061501CrossRef Novikov VN, Ding Y, Sokolov AP (2005) Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys Rev E 71:061501CrossRef
31.
go back to reference Malinovsky VK, Surovtsev NV (2000) Inhomogeneity on the nanometer scale as a universal property of glasses. Glass Phys Chem 26:217–222 Malinovsky VK, Surovtsev NV (2000) Inhomogeneity on the nanometer scale as a universal property of glasses. Glass Phys Chem 26:217–222
32.
go back to reference Donth E (2001) The glass transition, relaxation dynamics in liquids and disordered materials. Springer, Berlin Donth E (2001) The glass transition, relaxation dynamics in liquids and disordered materials. Springer, Berlin
33.
go back to reference Achibat T, Boukenter A, Duval E, Lorentz G, Etienne S (1991) Low-frequency Raman scattering and structure of amorphous polymers: stretching effect. J Chem Phys 95:2949CrossRef Achibat T, Boukenter A, Duval E, Lorentz G, Etienne S (1991) Low-frequency Raman scattering and structure of amorphous polymers: stretching effect. J Chem Phys 95:2949CrossRef
34.
go back to reference Duval E, Boukenter A, Achibat T (1990) Vibrational dynamics and the structure of glass. J Phys Condens Matter 2:10227–10234CrossRef Duval E, Boukenter A, Achibat T (1990) Vibrational dynamics and the structure of glass. J Phys Condens Matter 2:10227–10234CrossRef
35.
go back to reference Porai-Koshitz EA (1964) Structure of glass. In: Proceedings of the 4th All-Union Conference on the Glassy State, Leningrad Porai-Koshitz EA (1964) Structure of glass. In: Proceedings of the 4th All-Union Conference on the Glassy State, Leningrad
36.
go back to reference Einstein A (1956) In: Furth R (ed) Investigation on the theory of the Brownian movement. Dover, New York Einstein A (1956) In: Furth R (ed) Investigation on the theory of the Brownian movement. Dover, New York
37.
go back to reference Peitegen HO, Jurgens H, Saupe D (1992) Chaos and fractals, new frontiers of science. Springer, New York Peitegen HO, Jurgens H, Saupe D (1992) Chaos and fractals, new frontiers of science. Springer, New York
38.
go back to reference Feigenbaum MJ (1983) Universal behavior in nonlinear systems. Physica D 7:16CrossRef Feigenbaum MJ (1983) Universal behavior in nonlinear systems. Physica D 7:16CrossRef
39.
go back to reference Walgraef D (1997) Spatio-temporal pattern formation. Springer, New York, pp 242–301CrossRef Walgraef D (1997) Spatio-temporal pattern formation. Springer, New York, pp 242–301CrossRef
40.
go back to reference Chvoj Z, Šesták J, Tříska A (1991) Kinetic phase diagrams; non-equilibrium phase transitions. Elsevier, Amsterdam Chvoj Z, Šesták J, Tříska A (1991) Kinetic phase diagrams; non-equilibrium phase transitions. Elsevier, Amsterdam
41.
go back to reference Swiney HL, Gollub JP (1978) Hydrodynamic instabilities and the transition to turbulence. Physics Today 41 Swiney HL, Gollub JP (1978) Hydrodynamic instabilities and the transition to turbulence. Physics Today 41
42.
go back to reference Rabinowitz MI, Ezersky AB, Weidman PD (2000) The dynamics of patterns. World Scientific, Singapore, pp 239–279 Rabinowitz MI, Ezersky AB, Weidman PD (2000) The dynamics of patterns. World Scientific, Singapore, pp 239–279
43.
go back to reference Paine HJ (1997) Physics of vibrations and waves. Wiley, New York Paine HJ (1997) Physics of vibrations and waves. Wiley, New York
44.
go back to reference Ueda U (1980) New approaches to non-linear dynamics. SIAM, Philadelphia Ueda U (1980) New approaches to non-linear dynamics. SIAM, Philadelphia
45.
go back to reference Tabor M (1989) Chaos and integrability in non-linear dynamics. Wiley, New York Tabor M (1989) Chaos and integrability in non-linear dynamics. Wiley, New York
46.
go back to reference Prigogine I, Stengers I (1984) Order out of chaos. Bantam Books, New York Prigogine I, Stengers I (1984) Order out of chaos. Bantam Books, New York
47.
go back to reference Kondepudi D, Prigogine I (1998) Modern thermodynamics. Wiley, New York, pp 409–452 Kondepudi D, Prigogine I (1998) Modern thermodynamics. Wiley, New York, pp 409–452
48.
go back to reference Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398CrossRef Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398CrossRef
49.
50.
go back to reference Šesták J (2004) Heat, thermal analysis and society, Chap. 14 Oscillations modes and modern theories of glassy state. Nucleus, Hradec Králové Šesták J (2004) Heat, thermal analysis and society, Chap. 14 Oscillations modes and modern theories of glassy state. Nucleus, Hradec Králové
51.
go back to reference Hlaváček B, Shánělová J, Málek J (1999) Discontinuities in amplitudes of particles micromotions characterizing phase transitions in liquid state. Mech Time-Depend Mater 3:351–369CrossRef Hlaváček B, Shánělová J, Málek J (1999) Discontinuities in amplitudes of particles micromotions characterizing phase transitions in liquid state. Mech Time-Depend Mater 3:351–369CrossRef
52.
go back to reference Gurney RW (1949) Introduction to statistical mechanics. Dover, New York Gurney RW (1949) Introduction to statistical mechanics. Dover, New York
53.
go back to reference Martienssen O (1910) Über neue Resonanzerscheinungen in Wechselstromkreisen. Phys Z 11:448–460 Martienssen O (1910) Über neue Resonanzerscheinungen in Wechselstromkreisen. Phys Z 11:448–460
54.
go back to reference Appleton EV (1924) On the anomalous behavior of vibration galvanometer. Philos Mag Ser 6(41):609–619CrossRef Appleton EV (1924) On the anomalous behavior of vibration galvanometer. Philos Mag Ser 6(41):609–619CrossRef
55.
go back to reference Minorsky N (1983) Nonlinear oscillations, vol 47. D. Van Nostrand, Toronto, p 15 Minorsky N (1983) Nonlinear oscillations, vol 47. D. Van Nostrand, Toronto, p 15
57.
go back to reference Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New York
58.
go back to reference Parkhurst HJ Jr, Jonas J (1975) Dense liquids. I. The effect of density and temperature self-diffusion of tetramethylsilane and benzene-d6. J Chem Phys 63:2699–2709 Parkhurst HJ Jr, Jonas J (1975) Dense liquids. I. The effect of density and temperature self-diffusion of tetramethylsilane and benzene-d6. J Chem Phys 63:2699–2709
59.
go back to reference Zwanzig R (1983) On the relation self–diffusion and viscosity of liquids. J Chem Phys 79:4507–4508CrossRef Zwanzig R (1983) On the relation self–diffusion and viscosity of liquids. J Chem Phys 79:4507–4508CrossRef
60.
go back to reference Bartoš J (1996) Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data. Colloid Polym Sci 274:14CrossRef Bartoš J (1996) Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data. Colloid Polym Sci 274:14CrossRef
61.
go back to reference Bartoš J, Banduch P, Šauša O, Krištiaková K, Krištiak J, Kanaya T, Jenniger W (1997) Free volume microstructure and its relationship to the chain dynamics in cis-1,4- polybutadiene as seen by positron annihilation lifetime spectroscopy. Macromolecules 30:6906CrossRef Bartoš J, Banduch P, Šauša O, Krištiaková K, Krištiak J, Kanaya T, Jenniger W (1997) Free volume microstructure and its relationship to the chain dynamics in cis-1,4- polybutadiene as seen by positron annihilation lifetime spectroscopy. Macromolecules 30:6906CrossRef
62.
go back to reference Račko D, Chelini R, Cardini G, Bartoš J, Califano S (2005) Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulation. Eur Phys 32:289–297CrossRef Račko D, Chelini R, Cardini G, Bartoš J, Califano S (2005) Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulation. Eur Phys 32:289–297CrossRef
63.
go back to reference Jean YC (1990) Positron-annihilation spectroscopy for chemical-analysis – a novel probe for microstructural analysis of polymers. Microchem J 42:72; Jean YC, Deng Q, Nguyen TT (1995) Free-volume hole properties in thermosetting plastics probed by positron annihilation spectroscopy: chain extension chemistry. Macromolecules 28:8840–8844 Jean YC (1990) Positron-annihilation spectroscopy for chemical-analysis – a novel probe for microstructural analysis of polymers. Microchem J 42:72; Jean YC, Deng Q, Nguyen TT (1995) Free-volume hole properties in thermosetting plastics probed by positron annihilation spectroscopy: chain extension chemistry. Macromolecules 28:8840–8844
64.
go back to reference Jean YC (1996) Comments on the paper “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers?”. Macromolecules 29:5756–5757CrossRef Jean YC (1996) Comments on the paper “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers?”. Macromolecules 29:5756–5757CrossRef
65.
66.
go back to reference van der Waals JD (1873) Over de continuiteit van den gas/en Vloeisfoestand. PhD thesis, Leiden van der Waals JD (1873) Over de continuiteit van den gas/en Vloeisfoestand. PhD thesis, Leiden
67.
go back to reference Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef
68.
go back to reference Johari GP (2000) Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J Chem Phys 112:7518–7523CrossRef Johari GP (2000) Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J Chem Phys 112:7518–7523CrossRef
69.
go back to reference Frenkel J (1955) Kinetic theory of liquids. Dover, New Jersey, p 12 Frenkel J (1955) Kinetic theory of liquids. Dover, New Jersey, p 12
70.
go back to reference Eyring H, Shik Jhon M (1969) Significant liquid structures. Wiley, New York Eyring H, Shik Jhon M (1969) Significant liquid structures. Wiley, New York
71.
go back to reference Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York
72.
go back to reference Le Fevre RJW (1965) Refractivity of organic molecules. Adv Phys Org Chem 3:1–35CrossRef Le Fevre RJW (1965) Refractivity of organic molecules. Adv Phys Org Chem 3:1–35CrossRef
73.
go back to reference Verkoczy B (1986) Saskoil Rep No.113. Saskoil, Regina, Saskatchewan Verkoczy B (1986) Saskoil Rep No.113. Saskoil, Regina, Saskatchewan
74.
go back to reference Donth E (1982) The size of cooperatively rearranging regions at the glass transition. J Non-cryst Solids 53:325–330CrossRef Donth E (1982) The size of cooperatively rearranging regions at the glass transition. J Non-cryst Solids 53:325–330CrossRef
75.
go back to reference Dollase T, Graf R, Heuer A, Spiess HW (2001) Local order and chain dynamics in molten polymer blocks revealed by proton double-quantum NMR. Macromolecules 34:298–309CrossRef Dollase T, Graf R, Heuer A, Spiess HW (2001) Local order and chain dynamics in molten polymer blocks revealed by proton double-quantum NMR. Macromolecules 34:298–309CrossRef
76.
go back to reference Bartoš J, Šauša O, Krištak J, Blochowitz T, Rossler E (2001) Free-volume microstructure of glycerol and its supercooled liquid-state dynamics. J Phys Condens Matter 13:11473–11484CrossRef Bartoš J, Šauša O, Krištak J, Blochowitz T, Rossler E (2001) Free-volume microstructure of glycerol and its supercooled liquid-state dynamics. J Phys Condens Matter 13:11473–11484CrossRef
77.
go back to reference Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-cryst Solids 279:126–135CrossRef Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-cryst Solids 279:126–135CrossRef
78.
go back to reference Hempel E, Beiner M, Renner T, Donth E (1996) Linearity of heat capacity step near the onset of α glass transition in poly-(n-alkylmethacrylates). Acta Polym 47:525CrossRef Hempel E, Beiner M, Renner T, Donth E (1996) Linearity of heat capacity step near the onset of α glass transition in poly-(n-alkylmethacrylates). Acta Polym 47:525CrossRef
79.
go back to reference Mohanty U (1994) Inhomogeneities and relaxation in supercooled liquids. J Chem Phys 100:5905–5909CrossRef Mohanty U (1994) Inhomogeneities and relaxation in supercooled liquids. J Chem Phys 100:5905–5909CrossRef
80.
go back to reference Reinsberg SA, Qiu XH, Wilhelm M, Spiess HW, Ediger MD (2001) Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J Chem Phys 114:7299–7302CrossRef Reinsberg SA, Qiu XH, Wilhelm M, Spiess HW, Ediger MD (2001) Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J Chem Phys 114:7299–7302CrossRef
81.
go back to reference Doi M, Edwards SF (1986) Theory of polymer dynamics. Clarendon, Oxford Doi M, Edwards SF (1986) Theory of polymer dynamics. Clarendon, Oxford
82.
go back to reference Bueche F (1962) Physical properties of polymers. Interscience, New York, p 106 Bueche F (1962) Physical properties of polymers. Interscience, New York, p 106
83.
go back to reference Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) The transition points in liquid state and their molecular modeling. Thermochim Acta 280/281:417 Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) The transition points in liquid state and their molecular modeling. Thermochim Acta 280/281:417
84.
go back to reference Lide DR (2002) Handbook of chemistry and physics, vol 10, 82nd edn., pp 160–174. CRC Press LLC, Washington DC; DiMarzio EA, Dowell F (1979) Theoretical prediction of the specific heat of polymer glasses. J Appl Phys 50:6061–6066 Lide DR (2002) Handbook of chemistry and physics, vol 10, 82nd edn., pp 160–174. CRC Press LLC, Washington DC; DiMarzio EA, Dowell F (1979) Theoretical prediction of the specific heat of polymer glasses. J Appl Phys 50:6061–6066
85.
go back to reference Eisenberg A (1993) The glassy state and the glass transition. In: Mark JE (ed) Physical properties of polymers. United Book, Baltimore Eisenberg A (1993) The glassy state and the glass transition. In: Mark JE (ed) Physical properties of polymers. United Book, Baltimore
86.
go back to reference Boyer RF (1963) The relation of transition temperatures to chemical structure in high polymers. Rubber Chem Technol 36:1303–1421CrossRef Boyer RF (1963) The relation of transition temperatures to chemical structure in high polymers. Rubber Chem Technol 36:1303–1421CrossRef
87.
go back to reference Boyer RF (1973) ΔCP Tg and related quantities for high polymers. J Macromol Sci Phys B 7:487–501CrossRef Boyer RF (1973) ΔCP Tg and related quantities for high polymers. J Macromol Sci Phys B 7:487–501CrossRef
88.
go back to reference Helfand E (1984) Dynamics of conformational transitions in polymers. Science 226:647–650CrossRef Helfand E (1984) Dynamics of conformational transitions in polymers. Science 226:647–650CrossRef
89.
go back to reference Meier DJ (1978) Molecular basis of transitions and relaxations. Gordon and Breach Science, London Meier DJ (1978) Molecular basis of transitions and relaxations. Gordon and Breach Science, London
90.
go back to reference van Krevelen DV, Hoftyzer PJ (1979) Properties of polymers. Wiley, New York van Krevelen DV, Hoftyzer PJ (1979) Properties of polymers. Wiley, New York
91.
go back to reference Curtis AJ (1960) Dielectric properties of polymeric systems. In: Birks J, Schulman JH (eds) Progress in dielectrics, vol 2. Wiley, New York, p 29 Curtis AJ (1960) Dielectric properties of polymeric systems. In: Birks J, Schulman JH (eds) Progress in dielectrics, vol 2. Wiley, New York, p 29
92.
go back to reference Ilavský M, Hasa J, Janáček J (1968) Secondary and tertiary β and γ maxima in amorphous polymers. Collect Czech Chem C 33:3197CrossRef Ilavský M, Hasa J, Janáček J (1968) Secondary and tertiary β and γ maxima in amorphous polymers. Collect Czech Chem C 33:3197CrossRef
93.
go back to reference Rossler E (1990) Indication for change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598CrossRef Rossler E (1990) Indication for change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598CrossRef
94.
go back to reference Blochowitz T, Brodin A, Rossler EA (2006) Evolution of the dynamic susceptibility in supercooled liquids and glasses. In: Coffey T, Kalmykov YP (eds) Advances in chemical physics, vol 133, part A, Fractals, diffusion, and relaxation in disordered complex systems. Wiley, Hoboken, pp 127–256 Blochowitz T, Brodin A, Rossler EA (2006) Evolution of the dynamic susceptibility in supercooled liquids and glasses. In: Coffey T, Kalmykov YP (eds) Advances in chemical physics, vol 133, part A, Fractals, diffusion, and relaxation in disordered complex systems. Wiley, Hoboken, pp 127–256
95.
go back to reference Brodin A, Rossler EA (2005) Depolarized light scattering study of glycerol. Eur Phys J B 44:3–14CrossRef Brodin A, Rossler EA (2005) Depolarized light scattering study of glycerol. Eur Phys J B 44:3–14CrossRef
96.
go back to reference Rossler E (1990) Indications for a change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598; Rossler E (1992) Comment on “decoupling of time scales of motion in polybutediene close to the glass transition. Phys Rev Lett 69:1620 Rossler E (1990) Indications for a change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598; Rossler E (1992) Comment on “decoupling of time scales of motion in polybutediene close to the glass transition. Phys Rev Lett 69:1620
97.
go back to reference Sokolov AP, Rossler E, Kisliuk A, Quitman D (1963) Dynamics of strong and fragile glass formers: differences and correlation with low-temperature properties. Phys Rev Lett 71:2062–2065CrossRef Sokolov AP, Rossler E, Kisliuk A, Quitman D (1963) Dynamics of strong and fragile glass formers: differences and correlation with low-temperature properties. Phys Rev Lett 71:2062–2065CrossRef
98.
go back to reference Vogel M, Rossler E (2000) On the nature of slow β-process in simple glass formers: A2H NMR study. J Phys Chem B 104:4285–4287CrossRef Vogel M, Rossler E (2000) On the nature of slow β-process in simple glass formers: A2H NMR study. J Phys Chem B 104:4285–4287CrossRef
99.
go back to reference Wiederich J, Surovtsev NV, Rossler E (2000) A comprehensive light study of the glass former toluene. J Chem Phys 113:1143–1153CrossRef Wiederich J, Surovtsev NV, Rossler E (2000) A comprehensive light study of the glass former toluene. J Chem Phys 113:1143–1153CrossRef
100.
go back to reference Vogel M, Rossler E (2001) Slow β process in simple organic glass formers studied by one- and two-dimensional 2H nuclear magnetic resonance. J Chem Phys 114:5802–5815, and 115: 10883–10891CrossRef Vogel M, Rossler E (2001) Slow β process in simple organic glass formers studied by one- and two-dimensional 2H nuclear magnetic resonance. J Chem Phys 114:5802–5815, and 115: 10883–10891CrossRef
101.
go back to reference Gibbs JH (1956) Nature of glass transition in polymers. J Chem Phys 25:185–186; DiMarzio EA, Gibbs JH (1963) Molecular interpretation of glass temperature depression by plasticizers. J Polym Sci A 1:1417–1428 Gibbs JH (1956) Nature of glass transition in polymers. J Chem Phys 25:185–186; DiMarzio EA, Gibbs JH (1963) Molecular interpretation of glass temperature depression by plasticizers. J Polym Sci A 1:1417–1428
102.
go back to reference Gibbs JH, DiMarzio EA (1958) Nature of glass transition and the glassy state. J Chem Phys 28:373–383CrossRef Gibbs JH, DiMarzio EA (1958) Nature of glass transition and the glassy state. J Chem Phys 28:373–383CrossRef
103.
go back to reference Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Appl Phys 43:139–146 Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Appl Phys 43:139–146
104.
go back to reference Goldstein M (1976) Viscous liquids and glass transition. Sources of the excess specific heat of the liquid. J Chem Phys 64:4767–4767; Goldstein M (1977) Viscous liquids and glass transition. Molecular mechanism for a thermodynamic second order transition. J Chem Phys 67:2246–2253 Goldstein M (1976) Viscous liquids and glass transition. Sources of the excess specific heat of the liquid. J Chem Phys 64:4767–4767; Goldstein M (1977) Viscous liquids and glass transition. Molecular mechanism for a thermodynamic second order transition. J Chem Phys 67:2246–2253
105.
go back to reference Johari GP (1985) Low frequency molecular relaxations in disordered solids. J Chim Phys 82:283–291 Johari GP (1985) Low frequency molecular relaxations in disordered solids. J Chim Phys 82:283–291
106.
go back to reference Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL (2009) Does the entropy and volume dependence of the structural α-relaxation originate from the Johari–Goldstein β-relaxation? In: Wondraczek L, Conradt R (eds) Glass and entropy, special issue of J Noncryst Solids 355:705–711 Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL (2009) Does the entropy and volume dependence of the structural α-relaxation originate from the Johari–Goldstein β-relaxation? In: Wondraczek L, Conradt R (eds) Glass and entropy, special issue of J Noncryst Solids 355:705–711
Metadata
Title
Vibration Forms in the Vicinity of Glass Transition, Structural Changes and the Creation of Voids When Assuming the Role of Polarizability
Authors
Jaroslav Šesták
Bořivoj Hlaváček
Pavel Hubík
Jiří J. Mareš
Copyright Year
2011
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-2882-2_3

Premium Partners