Skip to main content
Top
Published in: Metallurgist 7-8/2013

01-11-2013

Heat-Resistant Wrought Weldable Alloy for GTE Components with Low Linear Thermal Expansion Coefficient

Authors: S. V. Ovsepyan, B. S. Lomberg, T. I. Grigor’eva, M. M. Bakradze

Published in: Metallurgist | Issue 7-8/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Features of the effect of alloying elements on linear thermal expansion coefficient of wrought heat-resistant alloys based on the Ni–Fe system are studied. Short-term and long-term strength at 600°C is simulated and parameters are used successfully as equivalent alloy chemical composition, calculated by a system of unpolarized ionic radii equations. A new deformable weldable alloy based on Ni–Fe–Co is developed with working temperature up to 650°C, with \( \upsigma_u^{20 } \) = 1400 MPa, \( \upsigma_u^{600 } \) = 1200 MPa, and \( \upsigma_{100}^{600 } \) = 950 MPa, with low linear thermal expansion coefficient (α = 11.8 · 10–6 K–1 in the temperature range 20–600°C). The alloy is structurally stable, efficient in forming and welding, and with respect to set of properties it is better than standard alloys of similar designation. New alloy structure, phase composition, and properties are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The work was performed by E. B. Chabina and E. V. Filonova.
 
Literature
1.
go back to reference E. N. Kablov, “Strategic areas for development of materials and processing technology in the period up to 2030,” in: Aviation Materials and Technology: Jubilee Sci.-Tech. Coll. (Appendix to Journal Aviatsionnye Materialy i Tekhnologii) [in Russian], VIAM, Moscow (2012), pp. 7–17. E. N. Kablov, “Strategic areas for development of materials and processing technology in the period up to 2030,” in: Aviation Materials and Technology: Jubilee Sci.-Tech. Coll. (Appendix to Journal Aviatsionnye Materialy i Tekhnologii) [in Russian], VIAM, Moscow (2012), pp. 7–17.
2.
go back to reference B. S. Lomberg, S. V. Ovsepyan, M. M. Bakradze, and I. S. Mazalov, “High-temperature heat-resistant nickel alloys for gas turbine engine components,” ibid., pp. 52–57. B. S. Lomberg, S. V. Ovsepyan, M. M. Bakradze, and I. S. Mazalov, “High-temperature heat-resistant nickel alloys for gas turbine engine components,” ibid., pp. 52–57.
3.
go back to reference C. T. Sims, N. S. Stoloffa, and U. K. Hagel (eds.), Superalloys II. Heat-Resistant Materials for Aerospace and Industrial Power Installations [Russian translation], in 2 books, Metallurgiya, Moscow (1993). C. T. Sims, N. S. Stoloffa, and U. K. Hagel (eds.), Superalloys II. Heat-Resistant Materials for Aerospace and Industrial Power Installations [Russian translation], in 2 books, Metallurgiya, Moscow (1993).
4.
go back to reference R. B. Frank, “The long-term stability of thermospan alloy,” JOM, 52, No. 1, 37–39 (2000).CrossRef R. B. Frank, “The long-term stability of thermospan alloy,” JOM, 52, No. 1, 37–39 (2000).CrossRef
5.
go back to reference E. A. Wanner and D. A. Deantonio, USA Patent 5283032, publ. 02.01.1992. E. A. Wanner and D. A. Deantonio, USA Patent 5283032, publ. 02.01.1992.
6.
go back to reference M. Fahrmann, S. K. Srivastava, and L. M. Pike, “Development of new 760°C (1400 °F) capable low thermal expansion alloy,” Proc. 12th Symp. Superalloys 2012, pp. 769–776. M. Fahrmann, S. K. Srivastava, and L. M. Pike, “Development of new 760°C (1400 °F) capable low thermal expansion alloy,” Proc. 12th Symp. Superalloys 2012, pp. 769–776.
7.
go back to reference K. A. Heck, M. A. Moore, D. F. Smith, et al., USA Patent 5478417, publ. 12.26.1995. K. A. Heck, M. A. Moore, D. F. Smith, et al., USA Patent 5478417, publ. 12.26.1995.
8.
go back to reference S. B. Maslenkov, Heat-Resistant Steels and Alloys: Handbook [in Russian], Metallurgiya, Moscow (1983). S. B. Maslenkov, Heat-Resistant Steels and Alloys: Handbook [in Russian], Metallurgiya, Moscow (1983).
9.
go back to reference V. B. Latyshev, “Heat-resistant wrought weldable alloys for combustion chamber,” Sci.-Tech. Coll. Aviation Materials Abroad in the XX–XXI Centuries, VIAM, Moscow (1994). V. B. Latyshev, “Heat-resistant wrought weldable alloys for combustion chamber,” Sci.-Tech. Coll. Aviation Materials Abroad in the XX–XXI Centuries, VIAM, Moscow (1994).
10.
go back to reference B. S. Lomberg, S. V. Ovsepyan, and V. B. Latyshev, “Contemporary wrought heat-resistant alloys,” Coll. Int. Sci.-Tech. Conf. Scientific Ideas of S. T. Kishkin and Contemporary Materials Science, VIAM, Moscow (2006), pp. 75–84. B. S. Lomberg, S. V. Ovsepyan, and V. B. Latyshev, “Contemporary wrought heat-resistant alloys,” Coll. Int. Sci.-Tech. Conf. Scientific Ideas of S. T. Kishkin and Contemporary Materials Science, VIAM, Moscow (2006), pp. 75–84.
11.
go back to reference M. F. Rothman and H. M. Twancy, USA Patent 4818486, Haynes International, Inc., publ. 04.04.1989. M. F. Rothman and H. M. Twancy, USA Patent 4818486, Haynes International, Inc., publ. 04.04.1989.
12.
go back to reference F. C. Hull, S. K. Hwang, J. M. Wells, and R. J. Jaffee, “Effect of composition on thermal expansion of alloys used in power generation,” J. Mat. Eng., 9, No. 1, 81–82 (1987).CrossRef F. C. Hull, S. K. Hwang, J. M. Wells, and R. J. Jaffee, “Effect of composition on thermal expansion of alloys used in power generation,” J. Mat. Eng., 9, No. 1, 81–82 (1987).CrossRef
13.
go back to reference E. V. Prikhod’ko, Metal Chemistry of Complex Alloying [in Russian], Metallurgiya, Moscow (1983). E. V. Prikhod’ko, Metal Chemistry of Complex Alloying [in Russian], Metallurgiya, Moscow (1983).
14.
go back to reference B. S. Lomberg, S. V. Ovsepyan, and E. V. Baburina, “Calculation of heat resistance of complexly-alloyed nickel alloys by means of a system of unpolarized ionic radii (SUIR) equations,” MiTOM, No. 6, 9–11 (1995). B. S. Lomberg, S. V. Ovsepyan, and E. V. Baburina, “Calculation of heat resistance of complexly-alloyed nickel alloys by means of a system of unpolarized ionic radii (SUIR) equations,” MiTOM, No. 6, 9–11 (1995).
15.
go back to reference B. S. Lomberg, S. V. Ovsepyan, and M. M. Bakradze, “Features of alloying and heat treatment of heat-resistant nickel alloys for a new generation of gas turbine engine disks,” Aviats. Mater. Tekhnol., No. 2, 3–8 (2012). B. S. Lomberg, S. V. Ovsepyan, and M. M. Bakradze, “Features of alloying and heat treatment of heat-resistant nickel alloys for a new generation of gas turbine engine disks,” Aviats. Mater. Tekhnol., No. 2, 3–8 (2012).
Metadata
Title
Heat-Resistant Wrought Weldable Alloy for GTE Components with Low Linear Thermal Expansion Coefficient
Authors
S. V. Ovsepyan
B. S. Lomberg
T. I. Grigor’eva
M. M. Bakradze
Publication date
01-11-2013
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2013
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-013-9779-9

Other articles of this Issue 7-8/2013

Metallurgist 7-8/2013 Go to the issue

Premium Partners