Skip to main content
Top

2020 | OriginalPaper | Chapter

Heat Transfer Enhancement During the Flow of Drag-Reducing Surfactant Solutions

Authors : Jacek Różański, Sylwia Różańska

Published in: Practical Aspects of Chemical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a review of methods for enhancing the heat transfer during flow of the drag reducing surfactant solutions proposed in the literature. For that type of fluids, the main goal is to increase the heat transfer coefficient to the level obtained during the flow of pure water. Based on the performed analysis of different methods for enhancing the heat transfer, it is clear that none of them can be treated as the universal one. The values of the heat transfer coefficient depend not only on the temperature and concentration of the solution but also on the type of surfactant used. In addition, the experimental results on heat transfer enhancement are presented only in graphical form. This means that the results published in the literature may be applied in practice only in the case when a flow system used is the same as a solution of surfactant in modelling studies and temperature conditions are similar.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aguilar, G., Gasljevic, K., Matthys, E.F.: Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. Int. J. Heat Mass Transf. 44, 2835–2843 (2001)CrossRef Aguilar, G., Gasljevic, K., Matthys, E.F.: Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. Int. J. Heat Mass Transf. 44, 2835–2843 (2001)CrossRef
go back to reference Aguilar, G., Gasljevic, K., Matthys, E.F.: Coupling between heat and momentum transfer mechanisms for drag reducing polymer and surfactant solutions. J. Heat Transf. 121, 796–802 (1999)CrossRef Aguilar, G., Gasljevic, K., Matthys, E.F.: Coupling between heat and momentum transfer mechanisms for drag reducing polymer and surfactant solutions. J. Heat Transf. 121, 796–802 (1999)CrossRef
go back to reference Aly, W.I.A., Inaba, H., Haruki, N., et al.: Drag and heat transfer reduction phenomena of drag-reducing surfactant solutions in straight and helical pipes. J. Heat Transf. 128, 800–810 (2006)CrossRef Aly, W.I.A., Inaba, H., Haruki, N., et al.: Drag and heat transfer reduction phenomena of drag-reducing surfactant solutions in straight and helical pipes. J. Heat Transf. 128, 800–810 (2006)CrossRef
go back to reference Broniarz-Press, L., Różański, J., Różańska, S.: Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23, 149–245 (2007)CrossRef Broniarz-Press, L., Różański, J., Różańska, S.: Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Eng. 23, 149–245 (2007)CrossRef
go back to reference Gasljevic, K., Aguilar, G., Matthys, E.F.: Buoyancy effects on heat transfer and temperature profiles in horizontal pipe flow of drag-reducing fluids. Int. J. Heat Mass Transf. 43, 4267–4274 (2000)CrossRef Gasljevic, K., Aguilar, G., Matthys, E.F.: Buoyancy effects on heat transfer and temperature profiles in horizontal pipe flow of drag-reducing fluids. Int. J. Heat Mass Transf. 43, 4267–4274 (2000)CrossRef
go back to reference Gasljevic, K., Matthys, E.F.: Experimental investigation of thermal and hydrodynamic development region for drag-reducing surfactant solutions. J. Heat Transf. 119, 80–119 (1997)CrossRef Gasljevic, K., Matthys, E.F.: Experimental investigation of thermal and hydrodynamic development region for drag-reducing surfactant solutions. J. Heat Transf. 119, 80–119 (1997)CrossRef
go back to reference Gasljevic, K., Matthys, E.F.: Improved quantification of the drag reduction phenomenon through turbulence reduction parameters. J. Non-Newtonian Fluid Mech. 84, 123–130 (1999)CrossRef Gasljevic, K., Matthys, E.F.: Improved quantification of the drag reduction phenomenon through turbulence reduction parameters. J. Non-Newtonian Fluid Mech. 84, 123–130 (1999)CrossRef
go back to reference Hadri, F., Besq, A., Guillou, S., et al.: Temperature and concentration influence on drag reduction of very low concentrated CTAC/NaSal aqueous solution in turbulent pipe flow. J. Non-Newtonian Fluid Mech. 166, 326–331 (2011)CrossRef Hadri, F., Besq, A., Guillou, S., et al.: Temperature and concentration influence on drag reduction of very low concentrated CTAC/NaSal aqueous solution in turbulent pipe flow. J. Non-Newtonian Fluid Mech. 166, 326–331 (2011)CrossRef
go back to reference Inaba, H., Aly, W.I.A., Haruki, N., et al.: Flow and heat transfer characteristic of drag reducing surfactant solution in helically coiled pipe. Heat Mass Transf. 41, 940–952 (2005)CrossRef Inaba, H., Aly, W.I.A., Haruki, N., et al.: Flow and heat transfer characteristic of drag reducing surfactant solution in helically coiled pipe. Heat Mass Transf. 41, 940–952 (2005)CrossRef
go back to reference Ketner, A.M., Kumar, R., Davies, T.S., et al.: A simple class of photorheological fluids: surfactant solutions with viscosity tunable by ligot. J. Am. Chem. Soc. 129, 1553–1559 (2007)CrossRef Ketner, A.M., Kumar, R., Davies, T.S., et al.: A simple class of photorheological fluids: surfactant solutions with viscosity tunable by ligot. J. Am. Chem. Soc. 129, 1553–1559 (2007)CrossRef
go back to reference Kumar, R., Raghavan, S.R.: Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5, 797–803 (2009)CrossRef Kumar, R., Raghavan, S.R.: Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5, 797–803 (2009)CrossRef
go back to reference Lee, H.Y., Diehn, K.K., Sun, K., et al.: Reversible photorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc. 133, 8461–8463 (2011)CrossRef Lee, H.Y., Diehn, K.K., Sun, K., et al.: Reversible photorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc. 133, 8461–8463 (2011)CrossRef
go back to reference Li, P., Kawaguchi, Y., Daisaka, H., Yabe, A., et al.: Heat transfer to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet. J. Heat Transf. 123, 779–789 (2001)CrossRef Li, P., Kawaguchi, Y., Daisaka, H., Yabe, A., et al.: Heat transfer to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet. J. Heat Transf. 123, 779–789 (2001)CrossRef
go back to reference Liu, Z.H., Liao, L.: Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added. Int. J. Therm. Sci. 49, 2331–2338 (2010)CrossRef Liu, Z.H., Liao, L.: Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added. Int. J. Therm. Sci. 49, 2331–2338 (2010)CrossRef
go back to reference Matthys, E.F.: Heat transfer, drag reduction, and fluid characterization for turbulent flow of polymer solutions: recent results and research needs. J. Non-Newtonian Fluid Mech. 38, 313–342 (1991)CrossRef Matthys, E.F.: Heat transfer, drag reduction, and fluid characterization for turbulent flow of polymer solutions: recent results and research needs. J. Non-Newtonian Fluid Mech. 38, 313–342 (1991)CrossRef
go back to reference Maxson, A., Watson, L., Karandikar, P., et al.: Heat transfer enhancement in turbulent drag reducing surfactant solutions by agitated heat exchangers. Int. J. Heat Mass Transf. 109, 1044–1051 (2017)CrossRef Maxson, A., Watson, L., Karandikar, P., et al.: Heat transfer enhancement in turbulent drag reducing surfactant solutions by agitated heat exchangers. Int. J. Heat Mass Transf. 109, 1044–1051 (2017)CrossRef
go back to reference Qi, Y., Kawaguchi, Y., Christensen, R.N., et al.: Enhancing heat-transfer ability of drag reducing surfactant solutions with static mixer and honeycombs. Int. J. Heat Mass Transf. 46, 5161–5173 (2003a)CrossRef Qi, Y., Kawaguchi, Y., Christensen, R.N., et al.: Enhancing heat-transfer ability of drag reducing surfactant solutions with static mixer and honeycombs. Int. J. Heat Mass Transf. 46, 5161–5173 (2003a)CrossRef
go back to reference Qi, Y., Kawaguchi, Y., Lin, Z., et al.: Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int. J. Heat Mass Transf. 44, 1495–1505 (2001)CrossRef Qi, Y., Kawaguchi, Y., Lin, Z., et al.: Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int. J. Heat Mass Transf. 44, 1495–1505 (2001)CrossRef
go back to reference Qi, Y., Weavers, L.K., Zakin, J.L.: Enhancing heat-transfer ability of drag reducing surfactant solutions with ultrasonic energy. J. Non-Newtonian Fluid Mech. 116, 71–93 (2003b)CrossRef Qi, Y., Weavers, L.K., Zakin, J.L.: Enhancing heat-transfer ability of drag reducing surfactant solutions with ultrasonic energy. J. Non-Newtonian Fluid Mech. 116, 71–93 (2003b)CrossRef
go back to reference Różański, J.: Heat transfer in the thermal entrance region for drag reduction surfactant solutions in pipe flow. Int. J. HeaMass Transf. 55(4), 1113–1125 (2012)CrossRef Różański, J.: Heat transfer in the thermal entrance region for drag reduction surfactant solutions in pipe flow. Int. J. HeaMass Transf. 55(4), 1113–1125 (2012)CrossRef
go back to reference Sears, P.L., Yang, L.: Heat transfer in a surfactant drag-reducing solution a comparison with predictions for laminar flow. J. Heat Transf. 128, 557–563 (2006)CrossRef Sears, P.L., Yang, L.: Heat transfer in a surfactant drag-reducing solution a comparison with predictions for laminar flow. J. Heat Transf. 128, 557–563 (2006)CrossRef
go back to reference Sato, K., Chu, R., Kumada, M.: Heat transfer enhancement using turbulent promoters for drag-reducing surfactant aqueous solution flow. J. Enhanc. Heat Transf. 10(3), 301–310 (2003)CrossRef Sato, K., Chu, R., Kumada, M.: Heat transfer enhancement using turbulent promoters for drag-reducing surfactant aqueous solution flow. J. Enhanc. Heat Transf. 10(3), 301–310 (2003)CrossRef
go back to reference Shi, H., Ge, W., Fang, B.: Enhancing heat transfer of drag-reducing surfactant solution by an HEV static mixer with low pressure drop. Adv. Mech. Eng. 2011, 1–10 (2011a) Shi, H., Ge, W., Fang, B.: Enhancing heat transfer of drag-reducing surfactant solution by an HEV static mixer with low pressure drop. Adv. Mech. Eng. 2011, 1–10 (2011a)
go back to reference Shi, H., Wang, Y., Fang, B., et al.: Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir 27, 5806–5813 (2011b)CrossRef Shi, H., Wang, Y., Fang, B., et al.: Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir 27, 5806–5813 (2011b)CrossRef
go back to reference Shi, H., Ge, W., Oh, H., et al.: Photoreversible micellar solution as a smart drag-reducing fluid for use in district heating/cooling systems. Langmuir 27, 102–109 (2013)CrossRef Shi, H., Ge, W., Oh, H., et al.: Photoreversible micellar solution as a smart drag-reducing fluid for use in district heating/cooling systems. Langmuir 27, 102–109 (2013)CrossRef
go back to reference Wang, Y., Shi, H., Fang, B., et al.: Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion. Exp. Heat Transf. 25(3), 139–150 (2012)CrossRef Wang, Y., Shi, H., Fang, B., et al.: Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion. Exp. Heat Transf. 25(3), 139–150 (2012)CrossRef
go back to reference Wang, Y., Yu, B., Zakin, J.L., et al.: Review on drag reduction and its heat transfer by additives. Adv. Mech. Eng. 2011, 1–17 (2011) Wang, Y., Yu, B., Zakin, J.L., et al.: Review on drag reduction and its heat transfer by additives. Adv. Mech. Eng. 2011, 1–17 (2011)
go back to reference Wei, J.J., Kawaguchi, Y., Li, F.C., et al.: Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. Int. J. Heat Mass Transf. 52, 3547–3554 (2009)CrossRef Wei, J.J., Kawaguchi, Y., Li, F.C., et al.: Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. Int. J. Heat Mass Transf. 52, 3547–3554 (2009)CrossRef
go back to reference Yang, J.Ch., Li, F.Ch., He, Y.R., et al.: Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelastic-fluid-based Cu nanofluid. Int. J. Heat Mass Transf. 62, 303–313 (2013)CrossRef Yang, J.Ch., Li, F.Ch., He, Y.R., et al.: Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelastic-fluid-based Cu nanofluid. Int. J. Heat Mass Transf. 62, 303–313 (2013)CrossRef
go back to reference Yang, J.Ch., Li, F.Ch., Zhou, W.W., et al.: Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int. J. Heat Mass Transf. 55, 3160–3166 (2012)CrossRef Yang, J.Ch., Li, F.Ch., Zhou, W.W., et al.: Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int. J. Heat Mass Transf. 55, 3160–3166 (2012)CrossRef
go back to reference Zhou, T., Leong, K.C., Leo, K.H.: Experimental study of heat transfer enhancement in a drag-reducing two-dimensional channel flow. Int. J. Heat Mass Transf. 49, 1462–1471 (2006)CrossRef Zhou, T., Leong, K.C., Leo, K.H.: Experimental study of heat transfer enhancement in a drag-reducing two-dimensional channel flow. Int. J. Heat Mass Transf. 49, 1462–1471 (2006)CrossRef
Metadata
Title
Heat Transfer Enhancement During the Flow of Drag-Reducing Surfactant Solutions
Authors
Jacek Różański
Sylwia Różańska
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39867-5_39