Skip to main content
Top

2023 | OriginalPaper | Chapter

HEMT for Biosensing Applications

Authors : Deepak Kumar Panda, Trupti Ranjan Lenka

Published in: HEMT Technology and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among various types of biological sensors, the semiconductor biosensors gathered attraction due to their superior advantage in the process of integration, multifunction, and miniaturization. ISFET’s based sensor has been processed for the very same as they deliver faster response, higher sensitivity, higher resolution, and label-free detection. The major drawback of these types of sensors it lacks because of its material degradation of the gate insulators and longer-term drift performance which possess instability in solution. Field-Effect Transistors (FET) based biosensors provide easy signal read-out capabilities, lower detection limit, and higher sensitivity. At the same time, the occurrence of Debye or Charge screening when exposed in high salt concentration suchlike as physiological fluids restrict in ground of clinical applications as assay requirements that includes expansive sample pre-treatment process steps, this technology suffer from noise signals which restrict their detection limit. Upon the introduction of a few external change around surface conditions, i.e., linking of biomolecules in the underlap area of gate region results in significant variation in the piezoelectric-induced carrier density inside channel region of the device results in variation in drain current. Henceforth, comparatively HEMT-based biosensor facilitates higher sensitivity upon immobilization of biomolecules. Therefore these demerits could be overcome by implementation of GaN HEMT biosensor that bears the built-in properties like stability in aqueous solutions, biocompatibility, and are more sensitive to surrounding surface charge as the 2DEG channel concentration at the heterointerface layer which changes due to its existing surface charge variations by capacitive coupling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference A.G. Gudkov, S.V. Agaseiva, V.G. Tikhomirov, V.V. Zherdeva, D.V. Klinov, V.D. Sasurin, Perspective in the development of biosensors based on AlGaN/GaN HEMT. Biomed. Eng. 53(3), 196–200 (2019)CrossRef A.G. Gudkov, S.V. Agaseiva, V.G. Tikhomirov, V.V. Zherdeva, D.V. Klinov, V.D. Sasurin, Perspective in the development of biosensors based on AlGaN/GaN HEMT. Biomed. Eng. 53(3), 196–200 (2019)CrossRef
4.
go back to reference R. Narang, K.V.Sashidhar Reddy, M. Saxena, R.S. Gupta, M. Gupta, A dielectric modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis, IEEE Electron Dev. Lett. 59(10), 2809–2817 (2012) R. Narang, K.V.Sashidhar Reddy, M. Saxena, R.S. Gupta, M. Gupta, A dielectric modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis, IEEE Electron Dev. Lett. 59(10), 2809–2817 (2012)
5.
go back to reference R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Dielectric modulated tunnel-field-effect-transistor-A biomolecule sensor. IEEE Electron Dev. Lett. 33(2), 266–268 (2012) R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Dielectric modulated tunnel-field-effect-transistor-A biomolecule sensor. IEEE Electron Dev. Lett. 33(2), 266–268 (2012)
6.
go back to reference R. Narang, M. Saxena, M. Gupta, Drain current model of a four-gate dielectric modulated MOSFET for application as a biosensor. IEEE Electron Dev. Lett. 62, 2636–2644 (2015)CrossRef R. Narang, M. Saxena, M. Gupta, Drain current model of a four-gate dielectric modulated MOSFET for application as a biosensor. IEEE Electron Dev. Lett. 62, 2636–2644 (2015)CrossRef
7.
go back to reference Ajay, R. Narang, M. Saxena, M. Gupta, Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as biosensor. Superlattices Microstruct. 85, 557–572, (2015) Ajay, R. Narang, M. Saxena, M. Gupta, Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as biosensor. Superlattices Microstruct. 85, 557–572, (2015)
8.
go back to reference R.K. Paswan, D.K. Panda, T.R. Lenka, Dielectric modulated AlGaAs/GaAs HEMT for label-free detection of biomolecules. International Workshop on the Physics of Semiconductor and Devices, pp. 709–715 (2017) R.K. Paswan, D.K. Panda, T.R. Lenka, Dielectric modulated AlGaAs/GaAs HEMT for label-free detection of biomolecules. International Workshop on the Physics of Semiconductor and Devices, pp. 709–715 (2017)
9.
go back to reference E. Rahman, A. Sadman, Q.D.M. Khosru, Effect of biomolecule position and fill in factor on the sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor. Sens. Bio-Sensing Res. 13, 49–54 (2017) E. Rahman, A. Sadman, Q.D.M. Khosru, Effect of biomolecule position and fill in factor on the sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor. Sens. Bio-Sensing Res. 13, 49–54 (2017)
10.
go back to reference Shaveta, H.M. Maali Ahmed, R. Chaujar, Rapid detection of biomolecules in a dielectric modulated GaN MOSHEMT, J Mater Sci. Mater Electron (2020) Shaveta, H.M. Maali Ahmed, R. Chaujar, Rapid detection of biomolecules in a dielectric modulated GaN MOSHEMT, J Mater Sci. Mater Electron (2020)
11.
go back to reference S. Kalra, M. Jagdesh Kumar, A. Dhawan, Dielectric modulated filed effect transistors for DNA detection: Impact of DNA orientation, IEEE Electron Dev. Lett. 37(11), 1485–1488 (2016) S. Kalra, M. Jagdesh Kumar, A. Dhawan, Dielectric modulated filed effect transistors for DNA detection: Impact of DNA orientation, IEEE Electron Dev. Lett. 37(11), 1485–1488 (2016)
12.
go back to reference E. Rahman, A. Sadman, Q.D.M. Khosru, Effect of biomolecule position and fill in factor on sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor, Sens. Bio-sensing Res. 13, 49–54 (2017) E. Rahman, A. Sadman, Q.D.M. Khosru, Effect of biomolecule position and fill in factor on sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor, Sens. Bio-sensing Res. 13, 49–54 (2017)
13.
go back to reference P. Pal, Y. Pratap, M. Gupta, S. Kabra, Modeling and simulation of AlGaN/GaN MOSHEMT for biosensor applications, 1–7 (2018) P. Pal, Y. Pratap, M. Gupta, S. Kabra, Modeling and simulation of AlGaN/GaN MOSHEMT for biosensor applications, 1–7 (2018)
14.
go back to reference A. Varghese, C. Periasamy, L. Bhargava, Fabrication and charge deduction based sensitivity analysis of GaN MOSHEMT device for glucose, MIG, C-erbB-2, KIM-1, and PSA detection. IEEE Trans. Nanotechnol. 18, 747–755 (2019)CrossRef A. Varghese, C. Periasamy, L. Bhargava, Fabrication and charge deduction based sensitivity analysis of GaN MOSHEMT device for glucose, MIG, C-erbB-2, KIM-1, and PSA detection. IEEE Trans. Nanotechnol. 18, 747–755 (2019)CrossRef
15.
go back to reference P. Pal, Y. Pratap, M. Gupta, S. Kabra, Modeling and simulation of AlGaN/GaN MOSHEMT for biosensor application. IEEE Sensors 1–7 (2018) P. Pal, Y. Pratap, M. Gupta, S. Kabra, Modeling and simulation of AlGaN/GaN MOSHEMT for biosensor application. IEEE Sensors 1–7 (2018)
16.
go back to reference D.K. Panda, T.R. Lenka, Analytical model development of channel potential, electric field, threshold voltage and drain current for gate workfunction engineered short channel E-mode N-polar GaN MOSHEMT. Microsyst. Technol. 1–8 (2019) D.K. Panda, T.R. Lenka, Analytical model development of channel potential, electric field, threshold voltage and drain current for gate workfunction engineered short channel E-mode N-polar GaN MOSHEMT. Microsyst. Technol. 1–8 (2019)
17.
go back to reference D.K. Panda, G. Amarnath, T.R. Lenka, Small signal parameter extraction of E-mode N-polar GaN MOSHEMT using optimization algorithms and its comparison. J. Semconductors 39(7), 074001 (1–9) (2018) D.K. Panda, G. Amarnath, T.R. Lenka, Small signal parameter extraction of E-mode N-polar GaN MOSHEMT using optimization algorithms and its comparison. J. Semconductors 39(7), 074001 (1–9) (2018)
18.
go back to reference A. Rakoski, S. Diez, H. Li, S. Keller, E. Ahmedi, C. Kurdak, Electron transport in N-Polar GaN-based heterostructures. Appl. Phys. Lett. 114, 162102 (2019) A. Rakoski, S. Diez, H. Li, S. Keller, E. Ahmedi, C. Kurdak, Electron transport in N-Polar GaN-based heterostructures. Appl. Phys. Lett. 114, 162102 (2019)
19.
go back to reference D.K. Panda, T.R. Lenka, Compact thermal noise model for enhancement mode N-polar GaN MOSHEMT including 2DEG density solution with two sub-bands, IET Circuits Devices and Systems, 1–7 (2018) D.K. Panda, T.R. Lenka, Compact thermal noise model for enhancement mode N-polar GaN MOSHEMT including 2DEG density solution with two sub-bands, IET Circuits Devices and Systems, 1–7 (2018)
20.
go back to reference D.K. Panda, T.R. Lenka, Analytical model development of channel potential, electric field, threshold voltage and drain current for gate workfunction engineered short channel E-mode N polar GaN MOSHEMT. Microsyst. Technol. 1–8 (2019) D.K. Panda, T.R. Lenka, Analytical model development of channel potential, electric field, threshold voltage and drain current for gate workfunction engineered short channel E-mode N polar GaN MOSHEMT. Microsyst. Technol. 1–8 (2019)
21.
go back to reference B.S. Kang, H.T. Wang, T.P. Lele, Y. Tseng, F. Ren, S.J. Pearton, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthcum, Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 91, 112106 (2007)CrossRef B.S. Kang, H.T. Wang, T.P. Lele, Y. Tseng, F. Ren, S.J. Pearton, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthcum, Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 91, 112106 (2007)CrossRef
22.
go back to reference J.D. Li, J.-J. Chang, B. Miao, X.-W. Wei, J. Xie, J.C. Zhang, Z.-Q. Zhang, H.-W. Li, D.M. Wu, Label free electrical detection of prostrate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistor (Springer, 2014) J.D. Li, J.-J. Chang, B. Miao, X.-W. Wei, J. Xie, J.C. Zhang, Z.-Q. Zhang, H.-W. Li, D.M. Wu, Label free electrical detection of prostrate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistor (Springer, 2014)
23.
go back to reference J.-D. Li, J.-J. Chang, B. Miao, X.-W. Wei, J. Xie, J.-C. Zhang, Z.-Q. Zhang, D.-M. Wu, Detection of prostrate specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors, J. Micromech. Microeng. 24, 075023 (2014) J.-D. Li, J.-J. Chang, B. Miao, X.-W. Wei, J. Xie, J.-C. Zhang, Z.-Q. Zhang, D.-M. Wu, Detection of prostrate specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors, J. Micromech. Microeng. 24, 075023 (2014)
24.
go back to reference Z. Gu, J. Wang, B. Miao, L. Zhao, X. Liu, D. Wu, J. Li, Highly sensitive AlGaN/GaN HEMT biosensors using an ethanolamine modification strategy for bioassay applications. RSC Adv. 9,15341(2019) Z. Gu, J. Wang, B. Miao, L. Zhao, X. Liu, D. Wu, J. Li, Highly sensitive AlGaN/GaN HEMT biosensors using an ethanolamine modification strategy for bioassay applications. RSC Adv. 9,15341(2019)
25.
go back to reference Md A. Khan, P. Kumar, G. Siddharth, M. Das, S. Mukherjee, Analysis of drain current in polycrystalline MgZnO/ZnO and MgZnO/CdZnO HFET, IEEE Trans. Electron Dev. 66(12), 5097–5102 (2019) Md A. Khan, P. Kumar, G. Siddharth, M. Das, S. Mukherjee, Analysis of drain current in polycrystalline MgZnO/ZnO and MgZnO/CdZnO HFET, IEEE Trans. Electron Dev. 66(12), 5097–5102 (2019)
26.
go back to reference Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circuits, Syst. Comput. (2019) Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circuits, Syst. Comput. (2019)
27.
go back to reference S.-H. Park, W.-P. Hong, J.-J. Kim, Theoretical Studies on the two dimensional electron gas properties of MgZnO/MgO/ ZnO heterostructures. J. Korean Phys. Soc. 69(1), 96–98 (2016)CrossRef S.-H. Park, W.-P. Hong, J.-J. Kim, Theoretical Studies on the two dimensional electron gas properties of MgZnO/MgO/ ZnO heterostructures. J. Korean Phys. Soc. 69(1), 96–98 (2016)CrossRef
28.
go back to reference B.H. Chu, B.S. Kang, H.T. Wang, C.Y. Chang, T. Lele, Y. Tseng, A. Goh, A. Sciullo, W.S. Wu, J.N. Lin, B.P. Gila, S.J. Pearton, J.W. Johnson, E.L. Piner, K.J. Linthicum, F. Ren, AlGaN/GaN HEMT and ZnO nanorod-based sensor for chemical and bio-applications 7216, 72162A1-10 (2009) B.H. Chu, B.S. Kang, H.T. Wang, C.Y. Chang, T. Lele, Y. Tseng, A. Goh, A. Sciullo, W.S. Wu, J.N. Lin, B.P. Gila, S.J. Pearton, J.W. Johnson, E.L. Piner, K.J. Linthicum, F. Ren, AlGaN/GaN HEMT and ZnO nanorod-based sensor for chemical and bio-applications 7216, 72162A1-10 (2009)
29.
go back to reference Y. Song, Y. Lie, X. Yan, Y. Zhang, Y. Liu, Biosensors of ZnO nanotetrapods and HEMT for detecting uric acid, IEEE, pp. 345–346 (2012) Y. Song, Y. Lie, X. Yan, Y. Zhang, Y. Liu, Biosensors of ZnO nanotetrapods and HEMT for detecting uric acid, IEEE, pp. 345–346 (2012)
30.
go back to reference S. Ma, Q. Liao, H. Liu, Y. song, P. Li, Y. Huang, Y. Zhang, An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Royal Soc. Chem 6415–6418 (2012) S. Ma, Q. Liao, H. Liu, Y. song, P. Li, Y. Huang, Y. Zhang, An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Royal Soc. Chem 6415–6418 (2012)
31.
go back to reference R. Singh, Md.A. Khan, S. Mukherjee, A. Kranti, Analytical model for 2DEG density in graded MgZnO/ZnO Heterostructures with cap layer. IEEE Trans. Electron Devices 64(9), 3661–3667 (2017) R. Singh, Md.A. Khan, S. Mukherjee, A. Kranti, Analytical model for 2DEG density in graded MgZnO/ZnO Heterostructures with cap layer. IEEE Trans. Electron Devices 64(9), 3661–3667 (2017)
32.
go back to reference K. Ding, C. Wang, B. Zhang, Y. Zhang, M. Guan, L. Cui, Y. Zhang, Y. Zeng, Z. Lin, F. Huang, Specific detection of alpha-fetoprotein using algaas/gaas high electron mobility transistors, IEEE Electron Device Lett. 35(3) (2014) K. Ding, C. Wang, B. Zhang, Y. Zhang, M. Guan, L. Cui, Y. Zhang, Y. Zeng, Z. Lin, F. Huang, Specific detection of alpha-fetoprotein using algaas/gaas high electron mobility transistors, IEEE Electron Device Lett. 35(3) (2014)
33.
go back to reference X.-M. Zhan, M.-L. Hao, Q. Wang, W. Li, H.-L. Xiao, C. Feng, L.-J. Jiang, C.-M. Wang, X.-L. Wang, Z.-G. Wang, Highly sensitive detection of deoxyribonucleic acid hybridization using Au-gated AlInN/GaN high electron mobility transistor-based sensors, Chin. Phys. Lett 34(4), 047301(2017) X.-M. Zhan, M.-L. Hao, Q. Wang, W. Li, H.-L. Xiao, C. Feng, L.-J. Jiang, C.-M. Wang, X.-L. Wang, Z.-G. Wang, Highly sensitive detection of deoxyribonucleic acid hybridization using Au-gated AlInN/GaN high electron mobility transistor-based sensors, Chin. Phys. Lett 34(4), 047301(2017)
34.
go back to reference Y. Song, X. Zhang, X. Yan, Q. Liao, Z. Wang, Y. Zhang, An enzymatic biosensor based on three-dimensional ZnO nanotetrapods spatial net modified AlGaAs/GaAs high electron mobility transistors. Appl. Phys. Lett 105, 213703 (2014) Y. Song, X. Zhang, X. Yan, Q. Liao, Z. Wang, Y. Zhang, An enzymatic biosensor based on three-dimensional ZnO nanotetrapods spatial net modified AlGaAs/GaAs high electron mobility transistors. Appl. Phys. Lett 105, 213703 (2014)
35.
go back to reference A. Varghese, C. Periasamy, L. Bhargava, Analytical modeling and simulation-based investigation of AlGaN/AlN/GaN Bio-HEMT Sensor for C-erbB-2 Detection. IEEE Sens. J. 18(23), 9595–9603 (2018)CrossRef A. Varghese, C. Periasamy, L. Bhargava, Analytical modeling and simulation-based investigation of AlGaN/AlN/GaN Bio-HEMT Sensor for C-erbB-2 Detection. IEEE Sens. J. 18(23), 9595–9603 (2018)CrossRef
36.
go back to reference S.N. Mishra, K. Jena, A dielectric-modulated normally-Off AlGaN / GaN MOSHEMT for bio-sensing application: Analytical modeling study and sensitivity analysis74(4) (2019) S.N. Mishra, K. Jena, A dielectric-modulated normally-Off AlGaN / GaN MOSHEMT for bio-sensing application: Analytical modeling study and sensitivity analysis74(4) (2019)
37.
go back to reference T.Y. Tai, A. Sinha, I. Sarangadharan, A.K. Pulikkathodi, S.L. Wang, S.C. Shiesh, Y.L. Wang, Aptamer-functionalized AlGaN/GaN high-electron-mobility transistor for rapid diagnosis of fibrinogen in human plasma, Sens. Mater. (2018) T.Y. Tai, A. Sinha, I. Sarangadharan, A.K. Pulikkathodi, S.L. Wang, S.C. Shiesh, Y.L. Wang, Aptamer-functionalized AlGaN/GaN high-electron-mobility transistor for rapid diagnosis of fibrinogen in human plasma, Sens. Mater. (2018)
38.
go back to reference B.H. Chu, B.S. Kang, C.Y. Chang, F. Ren, A. Goh, A. Sciullo, K.J. Linthicum, AlGaN/GaN high electron mobility transistors integrated into wireless detection system for glucose and pH in exhaled breath condensate. ECS Trans. 19(3), 85–97 (2019)CrossRef B.H. Chu, B.S. Kang, C.Y. Chang, F. Ren, A. Goh, A. Sciullo, K.J. Linthicum, AlGaN/GaN high electron mobility transistors integrated into wireless detection system for glucose and pH in exhaled breath condensate. ECS Trans. 19(3), 85–97 (2019)CrossRef
39.
go back to reference J.Y. Pyo, J.H. Jeon, Y. Koh, C.Y. Cho, H.H. Park, K.H. Park, W.J. Cho, AlGaN/GaN high-electron-mobility transistor pH sensor with extended gate platform. AIP Adv. 8(8), 1–6 (2018) J.Y. Pyo, J.H. Jeon, Y. Koh, C.Y. Cho, H.H. Park, K.H. Park, W.J. Cho, AlGaN/GaN high-electron-mobility transistor pH sensor with extended gate platform. AIP Adv. 8(8), 1–6 (2018)
40.
go back to reference I. Sarangadharan, A. Regmi, Y.W. Chen, C.P. Hsu, P.C. Chen, W.H. Chang, Y. L. Wang, High sensitivity cardiac troponinI detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) biosensors. Biosens Bioelectron (2018) I. Sarangadharan, A. Regmi, Y.W. Chen, C.P. Hsu, P.C. Chen, W.H. Chang, Y. L. Wang, High sensitivity cardiac troponinI detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) biosensors. Biosens Bioelectron (2018)
Metadata
Title
HEMT for Biosensing Applications
Authors
Deepak Kumar Panda
Trupti Ranjan Lenka
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2165-0_16