Skip to main content
Top
Published in: International Journal of Parallel Programming 5/2016

01-10-2016

Hierarchical Synthesis of Quantum and Reversible Architectures

Published in: International Journal of Parallel Programming | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reversible hardware finds application in emerging areas such as low power circuit design, quantum computing, optical computing, and DNA computing. Intensive research has recently focused on the synthesis of quantum and reversible architectures. Quantum architectures often take advantage of reversible circuit synthesis methods but in general they require dedicated synthesis approaches because they represent a more general computing paradigm. Most of these quantum and reversible synthesis approaches derive efficient or even optimal circuits with scalability being their major drawback: they can only handle small circuits (up to a few hundred inputs for the most promising ones). In this paper, we propose a graph-based hierarchical synthesis method for large reversible and quantum architectures which can be combined with any of the existing synthesis methods to deliver unlimited scalability in synthesizing arbitrary large and irregular architectures. The specification of any complex function is provided in the form of a sequential algorithm consisting of primitive pre-synthesized operations available in a library. The components of the library may have been designed by ad-hoc methods or synthesized by the known methods in the literature or even by the proposed synthesis procedure. The synthesized architecture is represented as a dependence graph whose nodes correspond to the available components of the library and their respective inverses so as no garbage remains at the output. The method can be recursively applied at multiple levels to build any complex reversible or quantum architecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abhari, A.J., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the ACM 11th Conference on Computing Frontiers, Art. 1 (2014) Abhari, A.J., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the ACM 11th Conference on Computing Frontiers, Art. 1 (2014)
2.
go back to reference Balensiefer, S., Kreger-Stickles, L., Oskin, M.: An Evaluation Framework and Instruction Set Architecture for Ion-Trap based Quantum Micro-architectures, 32nd ISCA, pp. 186–196 (2005) Balensiefer, S., Kreger-Stickles, L., Oskin, M.: An Evaluation Framework and Instruction Set Architecture for Ion-Trap based Quantum Micro-architectures, 32nd ISCA, pp. 186–196 (2005)
3.
go back to reference Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRef Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRef
4.
go back to reference Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54(2), 1034–1063 (1996)MathSciNetCrossRef Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54(2), 1034–1063 (1996)MathSciNetCrossRef
6.
go back to reference Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3(2), 27–32 (2001)CrossRef Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3(2), 27–32 (2001)CrossRef
7.
go back to reference Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: 16th International Symposium VDAT, pp. 383–392 (2012) Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: 16th International Symposium VDAT, pp. 383–392 (2012)
8.
go back to reference Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef
9.
go back to reference Green, A.S., Lumsdaine, P.L., Ross, N.J.: Quipper: A Scalable Quantum Programming Language, ACM PLDI 13 (2013) Green, A.S., Lumsdaine, P.L., Ross, N.J.: Quipper: A Scalable Quantum Programming Language, ACM PLDI 13 (2013)
10.
go back to reference Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)CrossRef Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)CrossRef
11.
go back to reference Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14, 115023 (2012)CrossRef Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14, 115023 (2012)CrossRef
12.
go back to reference Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach—Zehnder Interferometer Based Design of all Optical Reversible Binary Adder, DATE (2012) Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach—Zehnder Interferometer Based Design of all Optical Reversible Binary Adder, DATE (2012)
13.
go back to reference Kreger-Stickles, L., Oskin, M.: Microcoded architectures for Ion-tap quantum computers. In: 35th ISCA, pp. 165–176 (2008) Kreger-Stickles, L., Oskin, M.: Microcoded architectures for Ion-tap quantum computers. In: 35th ISCA, pp. 165–176 (2008)
15.
go back to reference Lin, C-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum Module Library, ACM JETC, vol. 11(1), Art. 7 (2014) Lin, C-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum Module Library, ACM JETC, vol. 11(1), Art. 7 (2014)
16.
go back to reference Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In: 31st ICCD, pp. 427–434 (2013) Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In: 31st ICCD, pp. 427–434 (2013)
17.
go back to reference Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic Synthesis, DAC, pp. 318–323 (2003) Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic Synthesis, DAC, pp. 318–323 (2003)
18.
go back to reference Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. of Electron. Syst. 12(4), 42:1–42:28 (2007)CrossRef Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. of Electron. Syst. 12(4), 42:1–42:28 (2007)CrossRef
19.
go back to reference Metodi, T.S., Chong, F.T.: Quantum Computing for Computer Architects. Morgan and Claypool Publishers, San Rafael (2006) Metodi, T.S., Chong, F.T.: Quantum Computing for Computer Architects. Morgan and Claypool Publishers, San Rafael (2006)
20.
go back to reference Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th ISCA (2005) Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th ISCA (2005)
21.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)MATH
22.
go back to reference Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring algorithm. Quantum Inf. Comput. 14(7&8), 0649–0682 (2014)MathSciNet Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring algorithm. Quantum Inf. Comput. 14(7&8), 0649–0682 (2014)MathSciNet
23.
go back to reference Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef
24.
go back to reference Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM J. Comput. Surveys 45(2), 21 (2013)MATH Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM J. Comput. Surveys 45(2), 21 (2013)MATH
25.
go back to reference Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM JETC. 6(4), Art. 13 (2010) Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM JETC. 6(4), Art. 13 (2010)
26.
go back to reference Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)CrossRef Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)CrossRef
27.
go back to reference Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)CrossRef Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)CrossRef
28.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATH Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATH
29.
go back to reference Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.: Quantum memory hierarchies: efficient designs to match available parallelism in quantum computing. In: 33rd ISCA, pp. 378–390 (2006) Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.: Quantum memory hierarchies: efficient designs to match available parallelism in quantum computing. In: 33rd ISCA, pp. 378–390 (2006)
30.
go back to reference Toffoli, T.: Reversible computing, MIT/LCS/TM-151 (1980) Toffoli, T.: Reversible computing, MIT/LCS/TM-151 (1980)
32.
go back to reference Vartiainen, J.J., Mottonen, M., Salomaa, M.S.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)CrossRef Vartiainen, J.J., Mottonen, M., Salomaa, M.S.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)CrossRef
33.
go back to reference Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM/IEEE DAC, pp. 270–275 (2009) Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM/IEEE DAC, pp. 270–275 (2009)
34.
go back to reference Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Berlin (2010)CrossRefMATH Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Berlin (2010)CrossRefMATH
35.
go back to reference Wille, R., Offermann, S., Drechsler, R.: SyReC: A Programming Language for Synthesis of Reversible Circuits, Forum on Specification and Design Languages (FDL), pp. 184–189 (2010) Wille, R., Offermann, S., Drechsler, R.: SyReC: A Programming Language for Synthesis of Reversible Circuits, Forum on Specification and Design Languages (FDL), pp. 184–189 (2010)
36.
go back to reference Wood, D.H., Chen, J.: Fredkin gate circuits via recombination enzymes. Congr. Evol. Comput. II, 1896–2000 (2004) Wood, D.H., Chen, J.: Fredkin gate circuits via recombination enzymes. Congr. Evol. Comput. II, 1896–2000 (2004)
Metadata
Title
Hierarchical Synthesis of Quantum and Reversible Architectures
Publication date
01-10-2016
Published in
International Journal of Parallel Programming / Issue 5/2016
Print ISSN: 0885-7458
Electronic ISSN: 1573-7640
DOI
https://doi.org/10.1007/s10766-016-0407-8

Other articles of this Issue 5/2016

International Journal of Parallel Programming 5/2016 Go to the issue

Premium Partner