Skip to main content
Top
Published in: Quantum Information Processing 6/2021

01-06-2021

High-capacity measurement-device-independent deterministic secure quantum communication

Authors: Yu-Guang Yang, Jing-Ru Dong, Yong-Li Yang, Jian Li, Yi-Hua Zhou, Wei-Min Shi

Published in: Quantum Information Processing | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deterministic secure quantum communication (DSQC) is an important branch of quantum cryptography and has attracted continuous attention. However, in practical DSQC, the receiver’s detectors can be subjected to detector-side-channel attacks launched by the outside eavesdropper. Moreover, encoding the information in only one degree of freedom (DOF) of photons makes DSQC inefficient. Here, to remove all the detector side channels and increase single-photons’ channel capacity, we report the first high-capacity measurement-device-independent DSQC (HC-MDI-DSQC) protocol by using photons’ polarization-spatial-mode DOFs. This method is similar to the idea of MDI quantum key distribution. Theoretical analyses show that it is advantageous in terms of security and efficiency compared with the state-of-the-art DSQC protocols.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)ADSCrossRef Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)ADSCrossRef
2.
go back to reference Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)ADSCrossRef Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)ADSCrossRef
3.
go back to reference Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407–L413 (2002)MathSciNetMATHCrossRef Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407–L413 (2002)MathSciNetMATHCrossRef
4.
go back to reference Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902/1-187902/4 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902/1-187902/4 (2002)ADSCrossRef
5.
go back to reference Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501/1-140501/4 (2005)ADSCrossRef Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501/1-140501/4 (2005)ADSCrossRef
6.
go back to reference Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)ADSCrossRef Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)ADSCrossRef
7.
go back to reference Li, X.-H., Deng, F.-G., Li, C.-Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006) Li, X.-H., Deng, F.-G., Li, C.-Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)
8.
go back to reference Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quant. Inform. 7(3), 689–696 (2009)MATHCrossRef Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quant. Inform. 7(3), 689–696 (2009)MATHCrossRef
9.
go back to reference Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. Chin.-Inf. Sci. 55(2), 360–367 (2012)MathSciNetCrossRef Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. Chin.-Inf. Sci. 55(2), 360–367 (2012)MathSciNetCrossRef
10.
go back to reference Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Ser. G-Phys. Mech. Astron. 56, 1903–1908 (2013)ADSCrossRef Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Ser. G-Phys. Mech. Astron. 56, 1903–1908 (2013)ADSCrossRef
11.
go back to reference Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53(8), 2558–2564 (2014)MathSciNetMATHCrossRef Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53(8), 2558–2564 (2014)MathSciNetMATHCrossRef
12.
go back to reference Hu, Y.-G.: Deterministic secure quantum communication with four-qubit GHZ states. Int. J. Theor. Phys. 57(9), 2831–2842 (2018)MATHCrossRef Hu, Y.-G.: Deterministic secure quantum communication with four-qubit GHZ states. Int. J. Theor. Phys. 57(9), 2831–2842 (2018)MATHCrossRef
13.
go back to reference Yuan, H., Song, J., Liu, X.-Y., Yin, X.-F.: Deterministic secure four-qubit GHZ states three-step protocol for quantum communication. Int. J. Theor. Phys. 58(11), 3658–3666 (2019)MathSciNetMATHCrossRef Yuan, H., Song, J., Liu, X.-Y., Yin, X.-F.: Deterministic secure four-qubit GHZ states three-step protocol for quantum communication. Int. J. Theor. Phys. 58(11), 3658–3666 (2019)MathSciNetMATHCrossRef
14.
go back to reference Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scrip. 96(2), 025101 (2021)ADSCrossRef Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scrip. 96(2), 025101 (2021)ADSCrossRef
15.
go back to reference Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)ADSCrossRef Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)ADSCrossRef
16.
go back to reference Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)ADSCrossRef Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)ADSCrossRef
17.
go back to reference Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)ADSCrossRef Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)ADSCrossRef
18.
go back to reference Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)ADSCrossRef Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)ADSCrossRef
19.
go back to reference Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)CrossRef Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)CrossRef
20.
go back to reference Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef
21.
go back to reference Walborn, S.P., Almeida, M.P., Souto Ribeiro, P.H., Monken, C.H.: Quantum information processing with hyperentangled photon states. Quantum Inf. Comput. 6, 336 (2006)MathSciNetMATH Walborn, S.P., Almeida, M.P., Souto Ribeiro, P.H., Monken, C.H.: Quantum information processing with hyperentangled photon states. Quantum Inf. Comput. 6, 336 (2006)MathSciNetMATH
22.
go back to reference Wu, X.-D., Zhou, L., Zhong, W., Sheng, Y.-B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 354 (2020)ADSMathSciNetCrossRef Wu, X.-D., Zhou, L., Zhong, W., Sheng, Y.-B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 354 (2020)ADSMathSciNetCrossRef
23.
go back to reference Wang, T.-J., Li, T., Du, F.-F., Deng, F.-G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef Wang, T.-J., Li, T., Du, F.-F., Deng, F.-G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef
24.
go back to reference Liu, D., Chen, J.-L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)MATHCrossRef Liu, D., Chen, J.-L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)MATHCrossRef
25.
go back to reference Zhao, R.-T., Cheng, L.-L.: High capacity information transmission with single-photon in polarization and spatial mode degrees of freedom over a collective noisy channel. Laser Phys. 30, 065204 (2020)ADSCrossRef Zhao, R.-T., Cheng, L.-L.: High capacity information transmission with single-photon in polarization and spatial mode degrees of freedom over a collective noisy channel. Laser Phys. 30, 065204 (2020)ADSCrossRef
26.
go back to reference Xu, L., Zhao, Z.-W.: High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom. Eur. Phys. J. D 73, 58 (2019)ADSCrossRef Xu, L., Zhao, Z.-W.: High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom. Eur. Phys. J. D 73, 58 (2019)ADSCrossRef
28.
go back to reference Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)ADSCrossRef Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)ADSCrossRef
29.
go back to reference Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)ADSCrossRef Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)ADSCrossRef
30.
go back to reference Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029 (2012)ADSCrossRef Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029 (2012)ADSCrossRef
31.
go back to reference Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)ADSCrossRef Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)ADSCrossRef
32.
go back to reference Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)ADSCrossRef Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)ADSCrossRef
33.
go back to reference Aharonov, D., Ta-Shma, A., Vazirani, U.V., et al.: Quantum bit escrow. Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 705–714 (2000) Aharonov, D., Ta-Shma, A., Vazirani, U.V., et al.: Quantum bit escrow. Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 705–714 (2000)
35.
go back to reference Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Phys. Rev. Lett. 96, 190501 (2006)ADSCrossRef Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Phys. Rev. Lett. 96, 190501 (2006)ADSCrossRef
36.
go back to reference Zhao, L., Yin, Z., Wang, S., et al.: Measurement-device-independent quantum coin tossing. Phys. Rev. A 92(6), 062327 (2015)ADSCrossRef Zhao, L., Yin, Z., Wang, S., et al.: Measurement-device-independent quantum coin tossing. Phys. Rev. A 92(6), 062327 (2015)ADSCrossRef
37.
go back to reference Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. Chin. Phys. Mech. Astron. 63(3), 230362 (2020)ADSCrossRef Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. Chin. Phys. Mech. Astron. 63(3), 230362 (2020)ADSCrossRef
38.
39.
go back to reference Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)MathSciNetMATHCrossRef Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)MathSciNetMATHCrossRef
40.
go back to reference Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)ADSMathSciNetCrossRef Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)ADSMathSciNetCrossRef
41.
go back to reference Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)MathSciNetCrossRef Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)MathSciNetCrossRef
42.
go back to reference Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)MathSciNetCrossRef Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)MathSciNetCrossRef
43.
go back to reference Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)MathSciNetMATHCrossRef Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)MathSciNetMATHCrossRef
44.
go back to reference Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)ADSCrossRef Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)ADSCrossRef
Metadata
Title
High-capacity measurement-device-independent deterministic secure quantum communication
Authors
Yu-Guang Yang
Jing-Ru Dong
Yong-Li Yang
Jian Li
Yi-Hua Zhou
Wei-Min Shi
Publication date
01-06-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 6/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03129-6

Other articles of this Issue 6/2021

Quantum Information Processing 6/2021 Go to the issue