Skip to main content
Top

2020 | OriginalPaper | Chapter

High Cycle Fatigue Properties of the Zr-Modified Al–Si–Cu–Mg Alloy at Elevated Temperatures

Authors : Guangyu Liu, Paul Blake, Shouxun Ji

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Al–Si–Cu–Mg alloy with 0.14 wt%Zr addition has been studied against the counterparts of commercially used EN-AC-42000 (Al7Si0.5Cu) baseline alloy for the effect of Zr on the high cycle fatigue (HCF) properties at elevated temperatures. It was found that the fatigue life was significantly improved by 8-10 times at the high stress amplitude of 140 MPa in the Zr-modified alloy at all different temperatures. The fatigue strength coefficient, \( \sigma_{f}^{{\prime }} \), of the baseline alloy was 574.9, 589.8, and 514.8 MPa at 150, 200, and 250 °C, respectively, which was greatly increased to 1412.3, 620.1, and 821.6 MPa for the Zr-modified alloy. The improved fatigue properties could be mainly ascribed to: (1) the refined microstructure, with α-Al grain size decreasing from 335 ± 18 to 253 ± 41 μm and the secondary dendrite arm spacing (SDAS) dropping from 39 to 28 μm; (2) the reduced porosity; and (3) the additional precipitates strengthening effect by the Al–Si–Zr–Ti dispersoids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ceschini L, Morri A, Toschi S, Seifeddine S (2016) Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment. Mater. Sci. Eng., A. 653: 129–138. Ceschini L, Morri A, Toschi S, Seifeddine S (2016) Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment. Mater. Sci. Eng., A. 653: 129–138.
2.
go back to reference Ceschini L, Morri A, Morri A, Toschi S, Johansson S, Seifeddine S (2015) Effect of microstructure and overaging on the tensile behavior at room and elevated temperature of C355-T6 cast aluminum alloy. Mater. Des. 83: 626–634. Ceschini L, Morri A, Morri A, Toschi S, Johansson S, Seifeddine S (2015) Effect of microstructure and overaging on the tensile behavior at room and elevated temperature of C355-T6 cast aluminum alloy. Mater. Des. 83: 626–634.
3.
go back to reference Yang H, Ji S, Yang W, Wang Y, Fan Z (2015) Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Mater. Sci. Eng., A. 642: 340–350. Yang H, Ji S, Yang W, Wang Y, Fan Z (2015) Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys. Mater. Sci. Eng., A. 642: 340–350.
4.
go back to reference Jeong, CY (2013) High temperature mechanical properties of AlSiMg(Cu) alloys for automotive cylinder heads. Mater. Trans. 54: 588–594. Jeong, CY (2013) High temperature mechanical properties of AlSiMg(Cu) alloys for automotive cylinder heads. Mater. Trans. 54: 588–594.
5.
go back to reference Javidani M, Larouche D (2014) Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 59: 132–158. Javidani M, Larouche D (2014) Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 59: 132–158.
6.
go back to reference Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J. Lig. Met. 1: 73–84. Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J. Lig. Met. 1: 73–84.
7.
go back to reference Firouzdor V, Rajabi M, Nejati E, Khomamizadeh F (2007) Effect of microstructural constituents on the thermal fatigue life of A319 alluminum alloy. Mater. Sci. Eng., A. 454–455: 528-535. Firouzdor V, Rajabi M, Nejati E, Khomamizadeh F (2007) Effect of microstructural constituents on the thermal fatigue life of A319 alluminum alloy. Mater. Sci. Eng., A. 454–455: 528-535.
8.
go back to reference Lasa L, Rodriguez-Ibabe JM (2004) Toughness and fatigue behaviour of eutectic and hypereutectic Al–Si–Cu–Mg alloys produced through lost foam and squeeze casting. Mater. Sci. Technol. 20: 1599–1608. Lasa L, Rodriguez-Ibabe JM (2004) Toughness and fatigue behaviour of eutectic and hypereutectic Al–Si–Cu–Mg alloys produced through lost foam and squeeze casting. Mater. Sci. Technol. 20: 1599–1608.
9.
go back to reference Gao YX, Yi JZ, Lee PD, Lindley TC (2004) A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys. Acta Mater. 52: 5435–5449. Gao YX, Yi JZ, Lee PD, Lindley TC (2004) A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys. Acta Mater. 52: 5435–5449.
10.
go back to reference Elhadari HA, Patel HA, Chen DL, Kasprzak W (2011) Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions. Mater. Sci. Eng., A. 528: 8128–8138. Elhadari HA, Patel HA, Chen DL, Kasprzak W (2011) Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions. Mater. Sci. Eng., A. 528: 8128–8138.
11.
go back to reference Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Improving high-temperature tensile and low-cycle fatigue behavior of Al–Si–Cu–Mg alloys through micro-additions of Ti, V, and Zr. Metall. Mater. Trans. A. 46A: 3063–3078. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Improving high-temperature tensile and low-cycle fatigue behavior of Al–Si–Cu–Mg alloys through micro-additions of Ti, V, and Zr. Metall. Mater. Trans. A. 46A: 3063–3078.
12.
go back to reference Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2016) Effect of Mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy. Mater. Sci. Eng., A. 657: 441–452. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2016) Effect of Mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy. Mater. Sci. Eng., A. 657: 441–452.
13.
go back to reference Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2017) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Mo and Mn. Mater. Sci. Eng., A. 684: 726–736. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2017) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Mo and Mn. Mater. Sci. Eng., A. 684: 726–736.
14.
go back to reference Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of Ti, V and Zr. Int. J. Fatigue. 70: 383–394. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2015) Monotonic and cyclic deformation behavior of the Al–Si–Cu–Mg cast alloy with micro-additions of Ti, V and Zr. Int. J. Fatigue. 70: 383–394.
15.
go back to reference Feng J, Ye B, Zuo L, Qi R, Wang Q, Jiang H, Huang R, Ding W (2017) Effects of Ni content on low cycle fatigue and mechanical properties of Al-12Si-0.9Cu-0.8 Mg-xNi at 350 °C. Mater. Sci. Eng., A. 706: 27–37. Feng J, Ye B, Zuo L, Qi R, Wang Q, Jiang H, Huang R, Ding W (2017) Effects of Ni content on low cycle fatigue and mechanical properties of Al-12Si-0.9Cu-0.8 Mg-xNi at 350 °C. Mater. Sci. Eng., A. 706: 27–37.
16.
go back to reference Committee (2015) Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. Committee (2015) Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials.
17.
go back to reference Liu G, Blake P, Ji S (2019) Effect of Zr on the high cycle fatigue and mechanical properties of Al–Si–Cu–Mg at elevated temperatures. J. Alloys Compd. 809: 151795–151809. Liu G, Blake P, Ji S (2019) Effect of Zr on the high cycle fatigue and mechanical properties of Al–Si–Cu–Mg at elevated temperatures. J. Alloys Compd. 809: 151795–151809.
18.
go back to reference Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2016) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Cr, Ti, V and Zr. Mater. Sci. Eng., A. 652: 353–364. Shaha SK, Czerwinski F, Kasprzak W, Friedman J, Chen DL (2016) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Cr, Ti, V and Zr. Mater. Sci. Eng., A. 652: 353–364.
19.
go back to reference Hernandez-Sandoval J, Garza-Elizondo GH, Samuel AM, Valtiierra S, Samuel FH (2014) The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58: 89–101. Hernandez-Sandoval J, Garza-Elizondo GH, Samuel AM, Valtiierra S, Samuel FH (2014) The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58: 89–101.
20.
go back to reference Kasprzak W, Amirkhiz BS, Niewczas M (2014) Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 595: 67–79. Kasprzak W, Amirkhiz BS, Niewczas M (2014) Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 595: 67–79.
21.
go back to reference Farkoosh AR, Pekguleryuz M (2015) Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 C: Effects of Mg and the Q-precipitate phase. Mater. Sci. Eng., A. 621: 277–286. Farkoosh AR, Pekguleryuz M (2015) Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 C: Effects of Mg and the Q-precipitate phase. Mater. Sci. Eng., A. 621: 277–286.
22.
go back to reference Mohamed AM, Samuel FH (2013) Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng., A. 577: 64–72. Mohamed AM, Samuel FH (2013) Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng., A. 577: 64–72.
23.
go back to reference Basquin OH (1910) The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10: 625–630. Basquin OH (1910) The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10: 625–630.
24.
go back to reference Easton M, StJohn D (2005) An Analysis of the relationship between grain size, solute content, and the potency and number density of nucleant Particles. Metall. Mater. Trans. A. 36: 1911–1920. Easton M, StJohn D (2005) An Analysis of the relationship between grain size, solute content, and the potency and number density of nucleant Particles. Metall. Mater. Trans. A. 36: 1911–1920.
25.
go back to reference StJohn DH, Qian M, Easton MA, Cao P (2011) The Interdependence Theory: The relationship between grain formation and nucleant selection. Acta Mater. 59: 4907–4921. StJohn DH, Qian M, Easton MA, Cao P (2011) The Interdependence Theory: The relationship between grain formation and nucleant selection. Acta Mater. 59: 4907–4921.
26.
go back to reference Yang W, Ji S, Zhou X, Stone I, Scamans G, Thompson GE, Fan Z (2014) Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM. Metall. Mater. Trans. A. 45: 3971–3980. Yang W, Ji S, Zhou X, Stone I, Scamans G, Thompson GE, Fan Z (2014) Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM. Metall. Mater. Trans. A. 45: 3971–3980.
27.
go back to reference Easton M, StJohn D (1999) Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A. 30: 1625–1633. Easton M, StJohn D (1999) Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A. 30: 1625–1633.
28.
go back to reference Easton M, StJohn D (2008) Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng., A. 486: 8–13. Easton M, StJohn D (2008) Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng., A. 486: 8–13.
29.
go back to reference Wang F, Liu Z, Qiu D, Taylor JA, Easton MA, Zhang MX (2013) Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61: 360–370. Wang F, Liu Z, Qiu D, Taylor JA, Easton MA, Zhang MX (2013) Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61: 360–370.
30.
go back to reference Quested TE, Dinsdale AT, Greer AL (2005) Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Mater. 53: 1323–1334. Quested TE, Dinsdale AT, Greer AL (2005) Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Mater. 53: 1323–1334.
31.
go back to reference Wang F, Qiu D, Liu ZL, Taylor JA, Easton MA, Zhang MX (2013) The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 61: 5636–5645. Wang F, Qiu D, Liu ZL, Taylor JA, Easton MA, Zhang MX (2013) The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 61: 5636–5645.
32.
go back to reference Colombo M, Gariboldi E, Morri A (2018) Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4 Mg alloy modified with 0.25%Er. Mater. Sci. Eng., A. 713: 151–160. Colombo M, Gariboldi E, Morri A (2018) Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4 Mg alloy modified with 0.25%Er. Mater. Sci. Eng., A. 713: 151–160.
33.
go back to reference Ye H (2003) An overview of the development of Al–Si-Alloy based material for engine applications. J. Mater. Eng. Perform. 12: 288–297. Ye H (2003) An overview of the development of Al–Si-Alloy based material for engine applications. J. Mater. Eng. Perform. 12: 288–297.
34.
go back to reference Rahimian M, Amirkhanlou S, Blake P, Ji S (2018) Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al–Si–Cu–Mg alloys. Mater. Sci. Eng., A. 721: 328–338. Rahimian M, Amirkhanlou S, Blake P, Ji S (2018) Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al–Si–Cu–Mg alloys. Mater. Sci. Eng., A. 721: 328–338.
35.
go back to reference Dong X, Zhang Y, Amirkhanlou S, Ji S (2018) High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2. J. Mater. Process. Technol. 252: 604–611. Dong X, Zhang Y, Amirkhanlou S, Ji S (2018) High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2. J. Mater. Process. Technol. 252: 604–611.
36.
go back to reference Dong X, Zhang Y, Ji S (2017) Enhancement of mechanical properties in high silicon gravity cast AlSi9 Mg alloy refined by Al3Ti3B master alloy. Mater. Sci. Eng., A. 700: 291–300. Dong X, Zhang Y, Ji S (2017) Enhancement of mechanical properties in high silicon gravity cast AlSi9 Mg alloy refined by Al3Ti3B master alloy. Mater. Sci. Eng., A. 700: 291–300.
37.
go back to reference Zheng Y, Xiao W, Ge S, Zhao W, Hanada S, Ma C (2015) Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al–Si–Cu–Mg alloys. J. Alloys Compd. 649: 291–296. Zheng Y, Xiao W, Ge S, Zhao W, Hanada S, Ma C (2015) Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al–Si–Cu–Mg alloys. J. Alloys Compd. 649: 291–296.
38.
go back to reference Huter P, Renhart P, Oberfrank S, Schwab M, Grün F, Stauder B (2016) High- and low-cycle fatigue influence of silicon, copper, strontium and iron on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads. Int. J. Fatigue. 82: 588–601. Huter P, Renhart P, Oberfrank S, Schwab M, Grün F, Stauder B (2016) High- and low-cycle fatigue influence of silicon, copper, strontium and iron on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads. Int. J. Fatigue. 82: 588–601.
39.
go back to reference Jana S, Mishra RS, Baumann JB, Grant G (2010) Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy. Acta Mater. 58: 989–1003. Jana S, Mishra RS, Baumann JB, Grant G (2010) Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy. Acta Mater. 58: 989–1003.
40.
go back to reference Dezecot S, Maurel V, Buffiere JY, Szmytka F, Koster A (2017) 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy. Acta Mater. 123: 24–34. Dezecot S, Maurel V, Buffiere JY, Szmytka F, Koster A (2017) 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy. Acta Mater. 123: 24–34.
41.
go back to reference Zhang B, Poirier DR, Chen W (1999) Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy. Metall. Mater. Trans. A. 30: 2659–2665. Zhang B, Poirier DR, Chen W (1999) Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy. Metall. Mater. Trans. A. 30: 2659–2665.
Metadata
Title
High Cycle Fatigue Properties of the Zr-Modified Al–Si–Cu–Mg Alloy at Elevated Temperatures
Authors
Guangyu Liu
Paul Blake
Shouxun Ji
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_36

Premium Partners