Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 3/2023

31-01-2023

High-efficient and reversible intelligent design for perforated auxetic metamaterials with peanut-shaped pores

Authors: Hongyuan Liu, Feng Hou, Ang Li, Yongpeng Lei, Hui Wang

Published in: International Journal of Mechanics and Materials in Design | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among various types of auxetic metamaterials, the perforated materials with peanut-shaped pores exhibit numerous advantages such as simple fabrication, high load-bearing capability, low stress-concentration level and flexibly tunable mechanical properties, and thus they have received much attention recently. However, one challenging is to make a high-efficient and reversible design of such metamaterials to meet diverse auxetic requirements, without the need to model them through conventional physics- or rule-based methods in time-consuming and case-by-case manner. In this study, a data-driven countermeasure is introduced by coupling back-propagation neural network (BPNN) and genetic algorithm (GA). Firstly, a dataset including microstructure-property pairs is prepared to train BPNN to determine the hidden logic mapping relationship from microstructural parameters to Poisson ratio. Then, GA is employed to optimize the mapping relationship to find the corresponding optimal solutions of microstructural parameters meeting the target Poisson’s ratio. The efficiency and accuracy of specific optimal designs is verified by the tensile experiment and finite element simulation. Subsequently, more optimal solutions corresponding to positive, zero or negative Poisson’s ratios are achieved under constrained/unconstrained conditions to accelerate the design of auxetic metamaterials by this interdisciplinary tool in which the auxetic characteristics and artificial intelligence are interconnected mutually.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrawal, G., Gupta, A., Chowdhury, R., Chakrabarti, A.: Robust topology optimization of negative Poisson’s ratio metamaterials under material uncertainty. Finite Elem. Anal. Des. 198, 103649 (2022)MathSciNetCrossRef Agrawal, G., Gupta, A., Chowdhury, R., Chakrabarti, A.: Robust topology optimization of negative Poisson’s ratio metamaterials under material uncertainty. Finite Elem. Anal. Des. 198, 103649 (2022)MathSciNetCrossRef
go back to reference Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef
go back to reference Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning for molecular and materials science. Nature 559, 547–555 (2018)CrossRef Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning for molecular and materials science. Nature 559, 547–555 (2018)CrossRef
go back to reference Chen, J., Hu, S., Zhu, S., Li, T.: Metamaterials: from fundamental physics to intelligent design. Interdisc. Mater. (2022) Chen, J., Hu, S., Zhu, S., Li, T.: Metamaterials: from fundamental physics to intelligent design. Interdisc. Mater. (2022)
go back to reference Du, G., Bu, L., Hou, Q., Zhou, J., Lu, B.: Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network. PLoS ONE 16, 0250795 (2021) Du, G., Bu, L., Hou, Q., Zhou, J., Lu, B.: Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network. PLoS ONE 16, 0250795 (2021)
go back to reference Feng, W., Yang, S.: Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm. Appl. Phys. A 122, 1018 (2016)CrossRef Feng, W., Yang, S.: Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm. Appl. Phys. A 122, 1018 (2016)CrossRef
go back to reference He, L., Guo, H., Jin, Y., Zhuang, X., Rabczuk, T., Li, Y.: Machine-learning-driven on-demand design of phononic beams. Sci. China Phys. Mech. Astrono. 65, 1–12 (2021a) He, L., Guo, H., Jin, Y., Zhuang, X., Rabczuk, T., Li, Y.: Machine-learning-driven on-demand design of phononic beams. Sci. China Phys. Mech. Astrono. 65, 1–12 (2021a)
go back to reference He, L., Wen, Z., Jin, Y., Torrent, D., Zhuang, X., Rabczuk, T.: Inverse design of topological metaplates for flexural waves with machine learning. Mater. Des. 199, 109390 (2021b)CrossRef He, L., Wen, Z., Jin, Y., Torrent, D., Zhuang, X., Rabczuk, T.: Inverse design of topological metaplates for flexural waves with machine learning. Mater. Des. 199, 109390 (2021b)CrossRef
go back to reference Jia, J., Hu, J., Wang, Y., Wu, S., Long, K.: Structural topology optimization with positive and negative Poisson’s ratio materials. Eng. Comput. 37, 1805–1822 (2020)CrossRef Jia, J., Hu, J., Wang, Y., Wu, S., Long, K.: Structural topology optimization with positive and negative Poisson’s ratio materials. Eng. Comput. 37, 1805–1822 (2020)CrossRef
go back to reference Jiang, Y., Liu, Z.Y., Matsuhisa, N., Qi, D.P., Leow, W.R., Yang, H., Yu, J.C., Chen, G., Liu, Y.Q., Wan, C.J., Liu, Z.J., Chen, X.D.: Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 30, 1706589 (2018)CrossRef Jiang, Y., Liu, Z.Y., Matsuhisa, N., Qi, D.P., Leow, W.R., Yang, H., Yu, J.C., Chen, G., Liu, Y.Q., Wan, C.J., Liu, Z.J., Chen, X.D.: Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 30, 1706589 (2018)CrossRef
go back to reference Jin, Y., He, L., Wen, Z., Mortazavi, B., Guo, H., Torrent, D., Djafari-Rouhani, B., Rabczuk, T., Zhuang, X., Li, Y.: Intelligent on-demand design of phononic metamaterials. Nanophotonics 11, 439–460 (2022)CrossRef Jin, Y., He, L., Wen, Z., Mortazavi, B., Guo, H., Torrent, D., Djafari-Rouhani, B., Rabczuk, T., Zhuang, X., Li, Y.: Intelligent on-demand design of phononic metamaterials. Nanophotonics 11, 439–460 (2022)CrossRef
go back to reference Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef
go back to reference Lakes, R.S.: Negative-Poisson's-ratio materials: auxetic solids. Annu. Rev. Mater. Res. 47, 63–81 (2017)CrossRef Lakes, R.S.: Negative-Poisson's-ratio materials: auxetic solids. Annu. Rev. Mater. Res. 47, 63–81 (2017)CrossRef
go back to reference Lakes, R., Wojciechowski, K.: Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi B 245, 545–551 (2008)CrossRef Lakes, R., Wojciechowski, K.: Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi B 245, 545–551 (2008)CrossRef
go back to reference Li, D., Dong, L., Yin, J., Lakes, R.S.: Negative Poisson’s ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study. J. Mater. Sci. 51, 7029–7037 (2016)CrossRef Li, D., Dong, L., Yin, J., Lakes, R.S.: Negative Poisson’s ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study. J. Mater. Sci. 51, 7029–7037 (2016)CrossRef
go back to reference Li, H., Yuan, D., Ma, X., Cui, D., Cao, L.: Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)CrossRef Li, H., Yuan, D., Ma, X., Cui, D., Cao, L.: Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)CrossRef
go back to reference Liu, Y., Zhao, T., Ju, W., Shi, S.: Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017)CrossRef Liu, Y., Zhao, T., Ju, W., Shi, S.: Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017)CrossRef
go back to reference Ma, W., Liu, Z., Kudyshev, Z.A., Boltasseva, A., Cai, W., Liu, Y.: Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021)CrossRef Ma, W., Liu, Z., Kudyshev, Z.A., Boltasseva, A., Cai, W., Liu, Y.: Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021)CrossRef
go back to reference Novak, N., Vesenjak, M., Ren, Z.: Auxetic cellular materials—a review. Stroj Vestn-J. Mech. E. 62, 485–493 (2016)CrossRef Novak, N., Vesenjak, M., Ren, Z.: Auxetic cellular materials—a review. Stroj Vestn-J. Mech. E. 62, 485–493 (2016)CrossRef
go back to reference Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefMATH Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefMATH
go back to reference Sedki, A., Ouazar, D., El Mazoudi, E.: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Syst. Appl. 36, 4523–4527 (2009)CrossRef Sedki, A., Ouazar, D., El Mazoudi, E.: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Syst. Appl. 36, 4523–4527 (2009)CrossRef
go back to reference Wang, L., Liu, H.T.: Parameter optimization of bidirectional re-entrant auxetic honeycomb metamaterial based on genetic algorithm. Compos. Struct. 267, 113915 (2021)CrossRef Wang, L., Liu, H.T.: Parameter optimization of bidirectional re-entrant auxetic honeycomb metamaterial based on genetic algorithm. Compos. Struct. 267, 113915 (2021)CrossRef
go back to reference Wang, Y., Gao, J., Luo, Z., Brown, T., Zhang, N.: Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Eng. Optim. 49, 22–42 (2017)MathSciNetCrossRef Wang, Y., Gao, J., Luo, Z., Brown, T., Zhang, N.: Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Eng. Optim. 49, 22–42 (2017)MathSciNetCrossRef
go back to reference Wang, Y., Zhao, W., Wang, H., Liu, Z.: A bio-inspired novel active elastic component based on negative Poisson’s ratio structure and dielectric elastomer. Smart Mater. Struct. 28, 015011 (2018)CrossRef Wang, Y., Zhao, W., Wang, H., Liu, Z.: A bio-inspired novel active elastic component based on negative Poisson’s ratio structure and dielectric elastomer. Smart Mater. Struct. 28, 015011 (2018)CrossRef
go back to reference Wang, Z., Luan, C., Liao, G., Liu, J., Yao, X., Fu, J.: Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv. Eng. Mater. 22, 2000312 (2020a)CrossRef Wang, Z., Luan, C., Liao, G., Liu, J., Yao, X., Fu, J.: Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv. Eng. Mater. 22, 2000312 (2020a)CrossRef
go back to reference Wang, H., Zhang, Y., Lin, W., Qin, Q.H.: A novel two-dimensional mechanical metamaterial with negative Poisson’s ratio. Comput. Mater. Sci. 171, 109232 (2020b)CrossRef Wang, H., Zhang, Y., Lin, W., Qin, Q.H.: A novel two-dimensional mechanical metamaterial with negative Poisson’s ratio. Comput. Mater. Sci. 171, 109232 (2020b)CrossRef
go back to reference Wang, H., Xiao, S.H., Zhang, C.: Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions. Adv. Eng. Mater. 23, 2100102 (2021)CrossRef Wang, H., Xiao, S.H., Zhang, C.: Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions. Adv. Eng. Mater. 23, 2100102 (2021)CrossRef
go back to reference Wilt, J.K., Yang, C., Gu, G.X.: Accelerating auxetic metamaterial design with deep learning. Adv. Eng. Mater. 22, 1901266 (2020)CrossRef Wilt, J.K., Yang, C., Gu, G.X.: Accelerating auxetic metamaterial design with deep learning. Adv. Eng. Mater. 22, 1901266 (2020)CrossRef
go back to reference Xia, Q., Shi, T.L., Xia, L.: Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput. Methods Appl. Mech. Eng. 343, 438–452 (2019)MathSciNetCrossRefMATH Xia, Q., Shi, T.L., Xia, L.: Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput. Methods Appl. Mech. Eng. 343, 438–452 (2019)MathSciNetCrossRefMATH
go back to reference Zhang, C., Xiao, S.H., Qin, Q.H., Wang, H.: Tunable compressive properties of a novel auxetic tubular material with low stress level. Thin Wall. Struct. 164, 107882 (2021)CrossRef Zhang, C., Xiao, S.H., Qin, Q.H., Wang, H.: Tunable compressive properties of a novel auxetic tubular material with low stress level. Thin Wall. Struct. 164, 107882 (2021)CrossRef
go back to reference Zhang, Z.Y., Li, J., Liu, H.T., Wang, Y.B.: Novel 2D arc-star-shaped structure with tunable Poisson’s ratio and its 3D configurations. Mater. Today Commun. 30, 103016 (2022)CrossRef Zhang, Z.Y., Li, J., Liu, H.T., Wang, Y.B.: Novel 2D arc-star-shaped structure with tunable Poisson’s ratio and its 3D configurations. Mater. Today Commun. 30, 103016 (2022)CrossRef
go back to reference Zheng, X., Chen, T.T., Guo, X., Samitsu, S., Watanabe, I.: Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 211, 110178 (2021)CrossRef Zheng, X., Chen, T.T., Guo, X., Samitsu, S., Watanabe, I.: Controllable inverse design of auxetic metamaterials using deep learning. Mater. Des. 211, 110178 (2021)CrossRef
Metadata
Title
High-efficient and reversible intelligent design for perforated auxetic metamaterials with peanut-shaped pores
Authors
Hongyuan Liu
Feng Hou
Ang Li
Yongpeng Lei
Hui Wang
Publication date
31-01-2023
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 3/2023
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-023-09648-7

Other articles of this Issue 3/2023

International Journal of Mechanics and Materials in Design 3/2023 Go to the issue

Premium Partners