Skip to main content
Top

2023 | OriginalPaper | Chapter

High Electron Mobility Transistor: Physics-Based TCAD Simulation and Performance Analysis

Authors : Kalyan Biswas, Rachita Ghoshhajra, Angsuman Sarkar

Published in: HEMT Technology and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High Electron Mobility Transistor (HEMT) attained great interest because of its superior electron transport making it suitable for applications in high-speed circuits and high power requirements. These devices are finding special interest to replace conventional field-effect transistors having outstanding performance in the domain of high-frequency applications. In HEMT, the high mobility of electrons and highly confined characteristics of the two-dimensional electron gas made sure that modulation doping could be utilized to have high-speed field-effect transistors having brilliant “Short Channel Effects” (SCEs) and excessive scope of scaling. However, lack of existing experimental results of such a device, designers require a dependable tool for simulation and analysis of the device characteristics in less time and low cost before device is fabricated for commercial use. Therefore, physics-based device simulator for design and performance prediction of the semiconductor device are very important. This book chapter describes an overview of the HEMT device and its physics-based simulation for performance analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), 225–227 (1980)CrossRef T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), 225–227 (1980)CrossRef
2.
go back to reference D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (Mcgraw-Hill, 2003) D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (Mcgraw-Hill, 2003)
3.
go back to reference M.N.A. Aadit, S. Kirtania, F. Afrin, M.K. Alam, Q.D.M. Khosru, High electron mobility transistors: Performance analysis, research trend and applications, in Different Types of Field-Effect Transistors-Theory and Applications (Chap. 3) (InTech, 2017). https://doi.org/10.5772/67796 M.N.A. Aadit, S. Kirtania, F. Afrin, M.K. Alam, Q.D.M. Khosru, High electron mobility transistors: Performance analysis, research trend and applications, in Different Types of Field-Effect Transistors-Theory and Applications (Chap. 3) (InTech, 2017). https://​doi.​org/​10.​5772/​67796
4.
go back to reference R. Szweda, Gallium Nitride and Related Bandgap Materials and Devices (Elsevier Science, 2000) R. Szweda, Gallium Nitride and Related Bandgap Materials and Devices (Elsevier Science, 2000)
5.
go back to reference R.J. Trew, M.W. Shin, V. Gatto, High power applications for GaN-based devices. Solid State Electron. 41(10), 1561–1567 (1997)CrossRef R.J. Trew, M.W. Shin, V. Gatto, High power applications for GaN-based devices. Solid State Electron. 41(10), 1561–1567 (1997)CrossRef
6.
go back to reference S.R. Bahl, J. Joh, L. Fu, A. Sasikumar, T. Chatterjee, S. Pendharkar, Application reliability validation of GaN power devices, in Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 Dec 2016, pp. 20.5.1–20.5.4. S.R. Bahl, J. Joh, L. Fu, A. Sasikumar, T. Chatterjee, S. Pendharkar, Application reliability validation of GaN power devices, in Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 Dec 2016, pp. 20.5.1–20.5.4.
7.
go back to reference K. Shinohara, T. Matsui, Y. Yamashita, A. Endoh, K. Hikosaka, T. Mimura, S. Hiyamizu, Simple and high-precision asymmetric gate-recess process for ultrafast InP-based high electron mobility transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 20, 2096–2100 (2002). https://doi.org/10.1116/1.1510527CrossRef K. Shinohara, T. Matsui, Y. Yamashita, A. Endoh, K. Hikosaka, T. Mimura, S. Hiyamizu, Simple and high-precision asymmetric gate-recess process for ultrafast InP-based high electron mobility transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 20, 2096–2100 (2002). https://​doi.​org/​10.​1116/​1.​1510527CrossRef
8.
go back to reference K. Shinohara, T. Matsui, Nano-gate transistor-world’s fastest InP-HEMT. J. Natl. Inst. Inf. Commun. Technol. 51, 95–102 (2004) K. Shinohara, T. Matsui, Nano-gate transistor-world’s fastest InP-HEMT. J. Natl. Inst. Inf. Commun. Technol. 51, 95–102 (2004)
9.
go back to reference C.K. Sarkar, Technology Computer Aided Design: Simulation for VLSI MOSFET (CRC Press, 2016) C.K. Sarkar, Technology Computer Aided Design: Simulation for VLSI MOSFET (CRC Press, 2016)
10.
go back to reference C.K. Maiti, Computer Aided Design of Micro- and Nanoelectronic Devices (WorldScientific, 2016) C.K. Maiti, Computer Aided Design of Micro- and Nanoelectronic Devices (WorldScientific, 2016)
11.
go back to reference W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)CrossRef W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)CrossRef
17.
go back to reference Z. Fang, The study of self-heating effect of AlGaN/GaN high electron mobility transistors based on TCAD. J. Phys. Conf. Ser. 1699 (1) (Article ID 012006) (Nov 2020) Z. Fang, The study of self-heating effect of AlGaN/GaN high electron mobility transistors based on TCAD. J. Phys. Conf. Ser. 1699 (1) (Article ID 012006) (Nov 2020)
19.
go back to reference H. Liu, B. Chou, W. Hsu, C. Lee, J. Sheu, C. Ho, Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique. IEEE Trans. Electron Devices 60(1), 213–220 (2013)CrossRef H. Liu, B. Chou, W. Hsu, C. Lee, J. Sheu, C. Ho, Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique. IEEE Trans. Electron Devices 60(1), 213–220 (2013)CrossRef
20.
go back to reference Y. Hori1, Z. Yatabe1, T. Hashizume, Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 114, 244503 (2013) Y. Hori1, Z. Yatabe1, T. Hashizume, Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 114, 244503 (2013)
21.
go back to reference Z. Dong, J. Wang, C.P. Wen, D. Gong, Y. Li, M. Yu et al., High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator. Solid State Electron. 54, 1339–1342 (2010)CrossRef Z. Dong, J. Wang, C.P. Wen, D. Gong, Y. Li, M. Yu et al., High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator. Solid State Electron. 54, 1339–1342 (2010)CrossRef
22.
go back to reference C.-S. Lee, Y.-H. Liao, B.-Y. Chou, H.-Y. Liu, W.-C. Hsu, Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation. Superlattice. Microst. 72, 194–203 (2014) C.-S. Lee, Y.-H. Liao, B.-Y. Chou, H.-Y. Liu, W.-C. Hsu, Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation. Superlattice. Microst. 72, 194–203 (2014)
23.
go back to reference C.-H. Hsu, W.-C. Shih, Y.-C. Lin, H.-T. Hsu, H.-H. Hsu, Y.-X. Huang, et al., Improved linearity and reliability in GaN metal–oxide–semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric. Jpn. J. Appl. Phys. 55, 04EG04 (2016) C.-H. Hsu, W.-C. Shih, Y.-C. Lin, H.-T. Hsu, H.-H. Hsu, Y.-X. Huang, et al., Improved linearity and reliability in GaN metal–oxide–semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric. Jpn. J. Appl. Phys. 55, 04EG04 (2016)
24.
go back to reference H.-C. Chiu, C.-W. Yang, Y.-H. Lin, R.-M. Lin, L.-B. Chang, K.-Y. Horng, Device characteristics of AlGaN/GaN MOS-HEMTs using high-praseodymium oxide layer. IEEE Trans. Electron. Dev. 55, 3305–3309 (2008) H.-C. Chiu, C.-W. Yang, Y.-H. Lin, R.-M. Lin, L.-B. Chang, K.-Y. Horng, Device characteristics of AlGaN/GaN MOS-HEMTs using high-praseodymium oxide layer. IEEE Trans. Electron. Dev. 55, 3305–3309 (2008)
25.
go back to reference S. Mondal, S. Paul, A. Sarkar, Investigation of the effect of barrier layer engineering on DC and RF performance of gate-recessed AlGaN/GaN HEMT, in Methodologies and Application Issues of Contemporary Computing Framework ed. by J. Mandal, S. Mukhopadhyay, P. Dutta, K. Dasgupta (Springer, Singapore, 2018). https://doi.org/10.1007/978-981-13-2345-4_14 S. Mondal, S. Paul, A. Sarkar, Investigation of the effect of barrier layer engineering on DC and RF performance of gate-recessed AlGaN/GaN HEMT, in Methodologies and Application Issues of Contemporary Computing Framework ed. by J. Mandal, S. Mukhopadhyay, P. Dutta, K. Dasgupta (Springer, Singapore, 2018). https://​doi.​org/​10.​1007/​978-981-13-2345-4_​14
26.
go back to reference S. Paul, S. Mondal, A. Sarkar, Characterization and analysis of low-noise GaN-HEMT based inverter circuits. Microsyst. Technol. 27, 3957–3965 (2021)CrossRef S. Paul, S. Mondal, A. Sarkar, Characterization and analysis of low-noise GaN-HEMT based inverter circuits. Microsyst. Technol. 27, 3957–3965 (2021)CrossRef
28.
go back to reference K. Biswas, A. Sarkar, C.K. Sarkar, Assessment of dielectrics and channel doping impact in nanoscale double gate III–V MOSFET with heavily doped source/drain region. ASP Mater. Focus 6(2), 116–120 (2017)CrossRef K. Biswas, A. Sarkar, C.K. Sarkar, Assessment of dielectrics and channel doping impact in nanoscale double gate III–V MOSFET with heavily doped source/drain region. ASP Mater. Focus 6(2), 116–120 (2017)CrossRef
30.
go back to reference Y. Xuan, Y.Q. Wu, P.D. Ye, High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 29(4), 294–296 (2008)CrossRef Y. Xuan, Y.Q. Wu, P.D. Ye, High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 29(4), 294–296 (2008)CrossRef
31.
go back to reference P.H. Woerlee, M.J. Knitel, R. van Langevelde, Member, IEEE, D.B. Klaassen, L.F. Tiemeijer, A.J. Scholten, A.T. Zegers-van Duijnhoven, RF-CMOS performance trends. IEEE Trans Electron Devices 48 (8), 1776–1782 (Aug, 2001) P.H. Woerlee, M.J. Knitel, R. van Langevelde, Member, IEEE, D.B. Klaassen, L.F. Tiemeijer, A.J. Scholten, A.T. Zegers-van Duijnhoven, RF-CMOS performance trends. IEEE Trans Electron Devices 48 (8), 1776–1782 (Aug, 2001)
32.
go back to reference A. Nandi, A.K. Saxena, S. Dasgupta, Impact of dual-k spacer on analog performance of underlap FinFET. Microelectron. J. 43, 883–887 (2012) A. Nandi, A.K. Saxena, S. Dasgupta, Impact of dual-k spacer on analog performance of underlap FinFET. Microelectron. J. 43, 883–887 (2012)
33.
go back to reference B. Murmann, P. Nikaeen, D.J. Connelly, R.W. Dutton, Impact of scaling on analog performance and associated modelling needs. IEEE Trans. Electron Devices 53 (9), 2160–2167 (Sept 2006) B. Murmann, P. Nikaeen, D.J. Connelly, R.W. Dutton, Impact of scaling on analog performance and associated modelling needs. IEEE Trans. Electron Devices 53 (9), 2160–2167 (Sept 2006)
35.
go back to reference L. Morassi, G. Verzellesi, H. Zhao, J.C. Lee, D. Veksler, G. Bersuker, Errors limiting split-CV mobility extraction accuracy in buried-channel InGaAs MOSFETs. IEEE Trans. Electron Devices 59 (4), 1068–1075 (Apr 2012) L. Morassi, G. Verzellesi, H. Zhao, J.C. Lee, D. Veksler, G. Bersuker, Errors limiting split-CV mobility extraction accuracy in buried-channel InGaAs MOSFETs. IEEE Trans. Electron Devices 59 (4), 1068–1075 (Apr 2012)
36.
go back to reference N. Mohankumar, B. Syamal, C.K. Sarkar, Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETs. IEEE Trans. Electron Devices 57 (4), 820–826 (Apr 2010) N. Mohankumar, B. Syamal, C.K. Sarkar, Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETs. IEEE Trans. Electron Devices 57 (4), 820–826 (Apr 2010)
37.
go back to reference H. Pardeshi, S.K. Pati, G. Raj, N. Mohankumar, C.K. Sarkar, Investigation of asymmetric effects due to gate misalignment, gate bias and underlap length in III–V heterostructure underlap DGMOSFET. Physica E 46, 61–67 (2012)CrossRef H. Pardeshi, S.K. Pati, G. Raj, N. Mohankumar, C.K. Sarkar, Investigation of asymmetric effects due to gate misalignment, gate bias and underlap length in III–V heterostructure underlap DGMOSFET. Physica E 46, 61–67 (2012)CrossRef
38.
go back to reference S. Tewari, A. Biswas, A. Mallik, Study of InGaAs-channel MOSFETs for analog/mixed-signal system-on-chip applications. IEEE Electron Device Lett. 33 (3), 372–374 (Mar 2012) S. Tewari, A. Biswas, A. Mallik, Study of InGaAs-channel MOSFETs for analog/mixed-signal system-on-chip applications. IEEE Electron Device Lett. 33 (3), 372–374 (Mar 2012)
39.
go back to reference K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144–151 (2014)CrossRef K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144–151 (2014)CrossRef
40.
go back to reference A. Sarkar, A.K. Das, S. De, C.K. Sarkar, Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron. J. 43, 873–882 (2012)CrossRef A. Sarkar, A.K. Das, S. De, C.K. Sarkar, Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron. J. 43, 873–882 (2012)CrossRef
42.
go back to reference S.K. Pati, H. Pardeshi, G. Raj, N. Mohan Kumar, C.K. Sarkar, Impact of gate length and barrier thickness on performance of InP/InGaAs based double gate metal–oxide-semiconductor heterostructure field-effect transistor (DG MOS-HFET). Superlattices Microstruct. 55, 8–15 (2013) S.K. Pati, H. Pardeshi, G. Raj, N. Mohan Kumar, C.K. Sarkar, Impact of gate length and barrier thickness on performance of InP/InGaAs based double gate metal–oxide-semiconductor heterostructure field-effect transistor (DG MOS-HFET). Superlattices Microstruct. 55, 8–15 (2013)
44.
go back to reference L. Yang, A. Asenov, J.R. Watling, M. Boriçi, J.R. Barker, S. Roy, K. Elgaid, I. Thayne, T. Hackbarth, Impact of device geometry and doping strategy on linearity and RF performance in Si/SiGe MODFETs. Microelectron. Reliab. 44 (7), 1101–1107 (2004) L. Yang, A. Asenov, J.R. Watling, M. Boriçi, J.R. Barker, S. Roy, K. Elgaid, I. Thayne, T. Hackbarth, Impact of device geometry and doping strategy on linearity and RF performance in Si/SiGe MODFETs. Microelectron. Reliab. 44 (7), 1101–1107 (2004)
45.
go back to reference B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, Antimonide-based compound semiconductors for electronic devices: A review. Solid-State Electron. 49(12), 1875–1895 (2005)CrossRef B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, Antimonide-based compound semiconductors for electronic devices: A review. Solid-State Electron. 49(12), 1875–1895 (2005)CrossRef
46.
go back to reference A. Adikimenakis, K.E. Aretouli, E. Iliopoulos, A. Kostopoulos, K. Tsagaraki, G. Konstantinidis, A. Georgakilas, High electron mobility transistors based on the AlN/GaN heterojunction. Microelectron. Eng. 86(4–6), 1071–1073 (2009)CrossRef A. Adikimenakis, K.E. Aretouli, E. Iliopoulos, A. Kostopoulos, K. Tsagaraki, G. Konstantinidis, A. Georgakilas, High electron mobility transistors based on the AlN/GaN heterojunction. Microelectron. Eng. 86(4–6), 1071–1073 (2009)CrossRef
47.
go back to reference G. Gu, Y. Cai, Z. Feng, B. Liu, C. Zeng, G. Yu, Z. Dong, B. Zhang, Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current. J. Semicond. 33, 064004-1-064004–3 (2012) G. Gu, Y. Cai, Z. Feng, B. Liu, C. Zeng, G. Yu, Z. Dong, B. Zhang, Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current. J. Semicond. 33, 064004-1-064004–3 (2012)
48.
go back to reference D.S. Lee, J.W. Chung, H. Wang, 245-GHz InAlN/GaN HEMTs with oxygen plasma treatment. IEEE Electron Device Lett. 32, 755–757 (2011)CrossRef D.S. Lee, J.W. Chung, H. Wang, 245-GHz InAlN/GaN HEMTs with oxygen plasma treatment. IEEE Electron Device Lett. 32, 755–757 (2011)CrossRef
59.
Metadata
Title
High Electron Mobility Transistor: Physics-Based TCAD Simulation and Performance Analysis
Authors
Kalyan Biswas
Rachita Ghoshhajra
Angsuman Sarkar
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2165-0_12