Skip to main content
Top
Published in: Engineering with Computers 4/2020

17-06-2019 | Original Article

High-order continuous Galerkin methods for multi-dimensional advection–reaction–diffusion problems

Authors: Ramy M. Hafez, Mahmoud A. Zaky

Published in: Engineering with Computers | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We construct in this paper two efficient spectral algorithms in the frequency space for solving unsteady advection–reaction–diffusion equations with constant and variable coefficients. We first consider a Jacobi–Galerkin method for solving linear equations with constant coefficients. We then develop the direct solution algorithm for the linear advection–reaction–diffusion equations with variable coefficients using the Jacobi–Galerkin method with numerical integration. The proposed Jacobi–Galerkin methods, both in temporal and spatial discretizations, are successfully developed to handle the two-dimensional unsteady advection–reaction–diffusion equations with constant and variable coefficients and with fractional orders. In these methods, the model solution is expanded in both space and time in terms of polynomials bases built upon a linear combination of Jacobi polynomials. The homogeneous initial and Dirichlet boundary conditions are satisfied exactly by expanding the model solution in terms of these polynomials. The proposed Jacobi–Galerkin methods yield an exponential rate of convergence when the solution is smooth and allow a great flexibility to handle multi-dimensional time fractional advection–reaction–diffusion equations. Finally, a series of numerical examples are presented to demonstrate the efficiency and flexibility of the methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leonard BP, MacVean MK, Lock AP (1995) The flux integral method for multidimensional convection and diffusion. Appl Math Modell 19:333–342MATH Leonard BP, MacVean MK, Lock AP (1995) The flux integral method for multidimensional convection and diffusion. Appl Math Modell 19:333–342MATH
2.
go back to reference Patel MK, Markatos NC, Cross M (1984) A critical evaluation of seven discretization schemes for convection-diffusion equations. Int J Numer Methods Fluids 5:225–244MATH Patel MK, Markatos NC, Cross M (1984) A critical evaluation of seven discretization schemes for convection-diffusion equations. Int J Numer Methods Fluids 5:225–244MATH
3.
go back to reference Cifani S, Jakobsen ER, Karlsen KH (2011) The discontinuous Galerkin method for fractional degenerate convection-diffusion equations. BIT Numer Math 51:809–844MathSciNetMATH Cifani S, Jakobsen ER, Karlsen KH (2011) The discontinuous Galerkin method for fractional degenerate convection-diffusion equations. BIT Numer Math 51:809–844MathSciNetMATH
4.
go back to reference Castillo P, Cockburn B, Schötzau D, Schwab C (2002) Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput 71(238):455–478MathSciNetMATH Castillo P, Cockburn B, Schötzau D, Schwab C (2002) Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput 71(238):455–478MathSciNetMATH
5.
go back to reference Cheng Y, Zhang Q (2017) Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. J Sci Comput 72:792–819MathSciNetMATH Cheng Y, Zhang Q (2017) Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. J Sci Comput 72:792–819MathSciNetMATH
6.
go back to reference Cheng Y, Meng X, Zhang Q (2017) Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math Comput 86:1233–1267MathSciNetMATH Cheng Y, Meng X, Zhang Q (2017) Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math Comput 86:1233–1267MathSciNetMATH
7.
go back to reference Wang H, Zhang Q, Shu C (2018) Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions. J Comput Appl Math 342:164–179MathSciNetMATH Wang H, Zhang Q, Shu C (2018) Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions. J Comput Appl Math 342:164–179MathSciNetMATH
8.
go back to reference Zhou L, Xu Y (2018) Stability analysis and error estimates of semi-implicit spectral deferred correction coupled with local discontinuous Galerkin method for linear convection-diffusion equations. J Sci Comput 77:1001–1029MathSciNetMATH Zhou L, Xu Y (2018) Stability analysis and error estimates of semi-implicit spectral deferred correction coupled with local discontinuous Galerkin method for linear convection-diffusion equations. J Sci Comput 77:1001–1029MathSciNetMATH
9.
go back to reference Burman E, Ern A (2007) Continuous interior penalty \(hp\)-finite element methods for advection and advection-diffusion equations. Math Comput 76:1119–1140MathSciNetMATH Burman E, Ern A (2007) Continuous interior penalty \(hp\)-finite element methods for advection and advection-diffusion equations. Math Comput 76:1119–1140MathSciNetMATH
10.
go back to reference Matthies G, Skrzypacz P, Tobiska L (2008) Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron Trans Numer Anal 32:90–105MathSciNetMATH Matthies G, Skrzypacz P, Tobiska L (2008) Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. Electron Trans Numer Anal 32:90–105MathSciNetMATH
11.
go back to reference Braack M, Lube G (2009) Finite elements with local projection stabilization for incompressible flow problems. J Comput Math 27:116–147MathSciNetMATH Braack M, Lube G (2009) Finite elements with local projection stabilization for incompressible flow problems. J Comput Math 27:116–147MathSciNetMATH
12.
go back to reference Ern A, Guermond J (2004) Theory and Practice of Finite Elements. Applied mathematical sciences. Springer, New YorkMATH Ern A, Guermond J (2004) Theory and Practice of Finite Elements. Applied mathematical sciences. Springer, New YorkMATH
13.
go back to reference Codina R (2011) Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. In: Lecture Notes in computational science and engineering, vol 81, pp 85–97 Codina R (2011) Finite element approximation of the convection-diffusion equation: subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. In: Lecture Notes in computational science and engineering, vol 81, pp 85–97
14.
go back to reference Saadatmandi A, Dehghan M, Azizi M (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul 17:4125–4136MathSciNetMATH Saadatmandi A, Dehghan M, Azizi M (2012) The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul 17:4125–4136MathSciNetMATH
15.
go back to reference Dehghan M, Abbaszadeh M, Mohebbi A (2015) Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J Comput Appl Math 280:14–36MathSciNetMATH Dehghan M, Abbaszadeh M, Mohebbi A (2015) Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J Comput Appl Math 280:14–36MathSciNetMATH
16.
go back to reference Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients Int. J Numer Methods Fluids 38:1111–1131MathSciNetMATH Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients Int. J Numer Methods Fluids 38:1111–1131MathSciNetMATH
17.
go back to reference Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195MathSciNetMATH Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195MathSciNetMATH
18.
go back to reference Noye BJ, Tan HH (1988) Finite difference methods for solving the two-dimensional advection-diffusion equation Int. J Numer Methods Fluids 26:1615–1629MATH Noye BJ, Tan HH (1988) Finite difference methods for solving the two-dimensional advection-diffusion equation Int. J Numer Methods Fluids 26:1615–1629MATH
19.
go back to reference Tian ZF, Ge YB (2007) A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems. J Comput Appl Math 198:268–286MathSciNetMATH Tian ZF, Ge YB (2007) A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problems. J Comput Appl Math 198:268–286MathSciNetMATH
20.
go back to reference Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605 Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605
21.
go back to reference Dehghan M, Mohebbi A (2008) High-order compact boundary value method for the solution of unsteady convection-diffusion problems. Math Comput Simul 79:683–699MathSciNetMATH Dehghan M, Mohebbi A (2008) High-order compact boundary value method for the solution of unsteady convection-diffusion problems. Math Comput Simul 79:683–699MathSciNetMATH
22.
go back to reference Zaky MA, Tenreiro Machado JA (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189MathSciNet Zaky MA, Tenreiro Machado JA (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189MathSciNet
23.
go back to reference Alsuyuti MM, Doha EH, Ezz-Eldien SS, Bayoumi BI, Baleanu D (2019) Modified Galerkin algorithm for solving multitype fractional differential equations. Math Meth Appl Sci 42(5):1389–1412MathSciNetMATH Alsuyuti MM, Doha EH, Ezz-Eldien SS, Bayoumi BI, Baleanu D (2019) Modified Galerkin algorithm for solving multitype fractional differential equations. Math Meth Appl Sci 42(5):1389–1412MathSciNetMATH
24.
go back to reference Doha EH, Bhrawy AH, Abd-Elhameed WM (2009) Jacobi spectral Galerkin method for elliptic Neumann problems. Numer Algorithms 50:67–91MathSciNetMATH Doha EH, Bhrawy AH, Abd-Elhameed WM (2009) Jacobi spectral Galerkin method for elliptic Neumann problems. Numer Algorithms 50:67–91MathSciNetMATH
25.
go back to reference Doha EH, Bhrawy AH, Hafez RM (2011) A Jacobi-Jacobi dual-Petrov-Galerkin method for third-and fifth-order differential equations. Math Comput Model 53:1820–1832MathSciNetMATH Doha EH, Bhrawy AH, Hafez RM (2011) A Jacobi-Jacobi dual-Petrov-Galerkin method for third-and fifth-order differential equations. Math Comput Model 53:1820–1832MathSciNetMATH
26.
go back to reference Zaky MA, Doha EH, Tenreiro Machado JA (2018) A spectral numerical method for solving distributed-order fractional initial value problems. J Comput Nonlinear Dynam 13(10):1–8 Zaky MA, Doha EH, Tenreiro Machado JA (2018) A spectral numerical method for solving distributed-order fractional initial value problems. J Comput Nonlinear Dynam 13(10):1–8
27.
go back to reference Doha EH, Hafez RM, Youssri YH (2019) Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Comput Math Appl 78(3):889–904MathSciNet Doha EH, Hafez RM, Youssri YH (2019) Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Comput Math Appl 78(3):889–904MathSciNet
28.
go back to reference Zaky MA, Doha EH, Tenreiro JA (2018) A spectral framework for fractional variational problems based on fractional Jacobi functions. Appl Numer Math 132:51–72MathSciNetMATH Zaky MA, Doha EH, Tenreiro JA (2018) A spectral framework for fractional variational problems based on fractional Jacobi functions. Appl Numer Math 132:51–72MathSciNetMATH
29.
go back to reference Khosravian-Arab H, Dehghan M, Eslahchi MR (2017) Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications. J Comput Phys 338:527–566MathSciNetMATH Khosravian-Arab H, Dehghan M, Eslahchi MR (2017) Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications. J Comput Phys 338:527–566MathSciNetMATH
30.
go back to reference Doha EH (2004) On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J Phys A: Math Gen 37:657–675MathSciNetMATH Doha EH (2004) On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J Phys A: Math Gen 37:657–675MathSciNetMATH
31.
go back to reference Luke Y (1969) The special functions and their approximations, vol 2. Academic Press, New YorkMATH Luke Y (1969) The special functions and their approximations, vol 2. Academic Press, New YorkMATH
34.
go back to reference Zaky MA (2019) Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J Comput Appl Math 357:103–122MathSciNetMATH Zaky MA (2019) Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J Comput Appl Math 357:103–122MathSciNetMATH
36.
go back to reference Zaky MA (2018) An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75:2243–2258MathSciNetMATH Zaky MA (2018) An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75:2243–2258MathSciNetMATH
37.
go back to reference Abdelkawy MA, Lopes MA, Zaky MA (2019) Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput Appl Math 38(81):1–21MathSciNetMATH Abdelkawy MA, Lopes MA, Zaky MA (2019) Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput Appl Math 38(81):1–21MathSciNetMATH
38.
go back to reference Teodoro GS, Machado JA, Oliveira EC (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208MathSciNet Teodoro GS, Machado JA, Oliveira EC (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208MathSciNet
39.
go back to reference Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895MathSciNetMATH Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895MathSciNetMATH
40.
go back to reference Nazir T, Abbas M, Ismail AI, Majid A, Rashid A (2016) The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach. Appl Math Model 40:4586–4611MathSciNetMATH Nazir T, Abbas M, Ismail AI, Majid A, Rashid A (2016) The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach. Appl Math Model 40:4586–4611MathSciNetMATH
41.
go back to reference Mittal RC, Jain RK (2012) Redefined cubic B-spline collocation method for solving convection diffusion equations. Appl Math Model 36:5555–5573MathSciNetMATH Mittal RC, Jain RK (2012) Redefined cubic B-spline collocation method for solving convection diffusion equations. Appl Math Model 36:5555–5573MathSciNetMATH
42.
go back to reference Goh J, Majid AA, Ismail AIBMd (2012) Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations. J Appl Math 2012(458701):1–8MathSciNetMATH Goh J, Majid AA, Ismail AIBMd (2012) Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations. J Appl Math 2012(458701):1–8MathSciNetMATH
43.
go back to reference Mohammadi R (2013) Exponential B-spline solution of convection-diffusion equations. Appl Math 4:933–944 Mohammadi R (2013) Exponential B-spline solution of convection-diffusion equations. Appl Math 4:933–944
44.
go back to reference Mohebbi A, Dehghan M (2010) High-order compact solution of the one dimensional heat and advection-diffusion equations. Appl Math Model 34:3071–3084MathSciNetMATH Mohebbi A, Dehghan M (2010) High-order compact solution of the one dimensional heat and advection-diffusion equations. Appl Math Model 34:3071–3084MathSciNetMATH
45.
go back to reference Golbabai A, Arabshahi MM (2010) A numerical method for diffusion-convection equation using high-order difference schemes. Comput Phys Commun 181:1224–1230MathSciNetMATH Golbabai A, Arabshahi MM (2010) A numerical method for diffusion-convection equation using high-order difference schemes. Comput Phys Commun 181:1224–1230MathSciNetMATH
46.
go back to reference Cao H, Liu L, Zhang Y, Fu S (2011) A fourth-order method of the convection-diffusion equations with Neumann boundary conditions. Appl Math Comput 217:9133–9141MathSciNetMATH Cao H, Liu L, Zhang Y, Fu S (2011) A fourth-order method of the convection-diffusion equations with Neumann boundary conditions. Appl Math Comput 217:9133–9141MathSciNetMATH
47.
go back to reference Zhou F, Xu X (2014) Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets. Appl Math Comput 247:353–367MathSciNetMATH Zhou F, Xu X (2014) Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets. Appl Math Comput 247:353–367MathSciNetMATH
Metadata
Title
High-order continuous Galerkin methods for multi-dimensional advection–reaction–diffusion problems
Authors
Ramy M. Hafez
Mahmoud A. Zaky
Publication date
17-06-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00797-y

Other articles of this Issue 4/2020

Engineering with Computers 4/2020 Go to the issue