Skip to main content
Top
Published in: Journal of Scientific Computing 1/2018

26-05-2017

High Order \(C^0\)-Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model

Authors: Sebastian Minjeaud, Richard Pasquetti

Published in: Journal of Scientific Computing | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We address the Korteweg-de Vries equation as an interesting model of high order partial differential equation, and show that it is possible to develop reliable and effective schemes, in terms of accuracy, computational efficiency, simplicity of implementation and, if required, conservation of the lower invariants, on the basis of a (only) \(H^1\)-conformal Galerkin approximation, namely the Spectral Element Method. The proposed approach is a priori easily extensible to other partial differential equations and to multidimensional problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aksan, E.N., Özdes, A.: Numerical solution of the Korteweg-de Vries equation by Galerkin B-spline finite element method. Appl. Math. Comput. 175, 1256–1265 (2006)MathSciNetMATH Aksan, E.N., Özdes, A.: Numerical solution of the Korteweg-de Vries equation by Galerkin B-spline finite element method. Appl. Math. Comput. 175, 1256–1265 (2006)MathSciNetMATH
2.
go back to reference Ascher, U.M., Ruth, S.J., Wetton, B.: Implicit–explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH Ascher, U.M., Ruth, S.J., Wetton, B.: Implicit–explicit methods for time-dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH
3.
go back to reference Ascher, U.M., Ruth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Num. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U.M., Ruth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Num. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
4.
go back to reference Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg-de Vries equation. Math. Comput. 40(163), 419–433 (1983)MathSciNetCrossRefMATH Baker, G.A., Dougalis, V.A., Karakashian, O.A.: Convergence of Galerkin approximations for the Korteweg-de Vries equation. Math. Comput. 40(163), 419–433 (1983)MathSciNetCrossRefMATH
5.
go back to reference Berezin, Y.U., Karpman, V.I.: Nonlinear evolution of disturbances in plasmas and other dispersive media. Sov. Phys. Jetp 24(5), 1049–1055 (1967) Berezin, Y.U., Karpman, V.I.: Nonlinear evolution of disturbances in plasmas and other dispersive media. Sov. Phys. Jetp 24(5), 1049–1055 (1967)
6.
go back to reference Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Phil. Trans. R. Soc. Lond. 351, 107–164 (1995)MathSciNetCrossRefMATH Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Phil. Trans. R. Soc. Lond. 351, 107–164 (1995)MathSciNetCrossRefMATH
7.
go back to reference Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetCrossRefMATH Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetCrossRefMATH
8.
go back to reference Bueno, N.D., Mastroserio, C.: Explicit methods based on a class of four stage fourth order Runge–Kutta methods for preserving quadratic invariants. J. of Comput. Appl. Math. 20, 247–260 (1996) Bueno, N.D., Mastroserio, C.: Explicit methods based on a class of four stage fourth order Runge–Kutta methods for preserving quadratic invariants. J. of Comput. Appl. Math. 20, 247–260 (1996)
9.
go back to reference Butcher, J.C.: A histoty of Runge–Kutta methods. Appl. Num. Math. 25, 151–167 (1997)CrossRef Butcher, J.C.: A histoty of Runge–Kutta methods. Appl. Num. Math. 25, 151–167 (1997)CrossRef
10.
go back to reference Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868885 (2006)MathSciNetCrossRefMATH Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868885 (2006)MathSciNetCrossRefMATH
11.
go back to reference Calvo, M., Laburta, M.P., Montijano, J.I., Rández, L.: Runge–Kutta. Adv. Comput. Math. 41, 231251 (2015)CrossRefMATH Calvo, M., Laburta, M.P., Montijano, J.I., Rández, L.: Runge–Kutta. Adv. Comput. Math. 41, 231251 (2015)CrossRefMATH
12.
go back to reference Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefMATH Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefMATH
13.
go back to reference Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer Verlag, Berlin (2007)MATH Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer Verlag, Berlin (2007)MATH
14.
go back to reference Carey, G.F., Shen, Y.: Approximation of the KdV equation by least square finite elements. J. Comput. Methods Appl. Mech. Eng. 93, 1–11 (1991)CrossRefMATH Carey, G.F., Shen, Y.: Approximation of the KdV equation by least square finite elements. J. Comput. Methods Appl. Mech. Eng. 93, 1–11 (1991)CrossRefMATH
15.
go back to reference Celledoni, E., McLachlan, R.I., McLaren, D.I., Owen, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM: M2AN 43, 645–649 (2009)MathSciNetCrossRefMATH Celledoni, E., McLachlan, R.I., McLaren, D.I., Owen, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM: M2AN 43, 645–649 (2009)MathSciNetCrossRefMATH
16.
go back to reference Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell’s equations. Numer. Methods Partial Differ. Equ. 14, 63–88 (1998)MathSciNetCrossRefMATH Cohen, G., Monk, P.: Gauss point mass lumping schemes for Maxwell’s equations. Numer. Methods Partial Differ. Equ. 14, 63–88 (1998)MathSciNetCrossRefMATH
18.
go back to reference Cui, Y., Mao, D.K.: Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation. J. Comput. Phys. 227(1), 376–399 (2007)MathSciNetCrossRefMATH Cui, Y., Mao, D.K.: Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation. J. Comput. Phys. 227(1), 376–399 (2007)MathSciNetCrossRefMATH
19.
go back to reference Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible fluid flow. Cambridge University Press, New York (2002)CrossRefMATH Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible fluid flow. Cambridge University Press, New York (2002)CrossRefMATH
20.
go back to reference Dubois-Pelerin, Y., van Kemenade, V., Deville, M.: An object-oriented toolbox for spectral element analysis. J. Sci. Comput. 14(1), 1–29 (1999)MathSciNetCrossRefMATH Dubois-Pelerin, Y., van Kemenade, V., Deville, M.: An object-oriented toolbox for spectral element analysis. J. Sci. Comput. 14(1), 1–29 (1999)MathSciNetCrossRefMATH
21.
go back to reference Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume methods for unidirectional dispersive wave models. Int. J. Numer. Methods Fluids 71, 717–736 (2013)MathSciNetCrossRef Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume methods for unidirectional dispersive wave models. Int. J. Numer. Methods Fluids 71, 717–736 (2013)MathSciNetCrossRef
22.
go back to reference Dumbser, M., Facchini, M.: A space-time discontinuous Galerkin method for Boussinesq-type equations. Appl. Math. Comput. 272, 336–346 (2016)MathSciNet Dumbser, M., Facchini, M.: A space-time discontinuous Galerkin method for Boussinesq-type equations. Appl. Math. Comput. 272, 336–346 (2016)MathSciNet
24.
go back to reference Funaro, D.: Spectral Elements for Transport-Dominated Equations. Springer-Verlag, Berlin (1997)CrossRefMATH Funaro, D.: Spectral Elements for Transport-Dominated Equations. Springer-Verlag, Berlin (1997)CrossRefMATH
25.
go back to reference Gardner, L.R.T., Gardner, G.A., Ali, A.H.A.: Simulations of solitons using quadratic spline finite elements. J. Comput. Methods Appl. Mech. Eng. 92, 231–243 (1991)MathSciNetCrossRefMATH Gardner, L.R.T., Gardner, G.A., Ali, A.H.A.: Simulations of solitons using quadratic spline finite elements. J. Comput. Methods Appl. Mech. Eng. 92, 231–243 (1991)MathSciNetCrossRefMATH
26.
go back to reference Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for non-linear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)MathSciNetCrossRefMATH Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for non-linear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)MathSciNetCrossRefMATH
27.
go back to reference Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)MathSciNetCrossRefMATH Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)MathSciNetCrossRefMATH
28.
go back to reference Hugues, T.J.R., Feijoo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH Hugues, T.J.R., Feijoo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH
29.
30.
go back to reference Kappeler, T., Topalov, P.: Global wellposedness of KdV in \(H^{-1} ({\mathbb{T}}, {\mathbb{R}})\). Duke Math. J. 135, 327–360 (2006)MathSciNetCrossRefMATH Kappeler, T., Topalov, P.: Global wellposedness of KdV in \(H^{-1} ({\mathbb{T}}, {\mathbb{R}})\). Duke Math. J. 135, 327–360 (2006)MathSciNetCrossRefMATH
31.
go back to reference Karniadakis, G.E., Sherwin, S.J.: Spectral Hp Element Methods for CFD. Oxford University Press, London (1999)MATH Karniadakis, G.E., Sherwin, S.J.: Spectral Hp Element Methods for CFD. Oxford University Press, London (1999)MATH
33.
go back to reference Kirby, R.M., Karniadakis, G.E.: De-aliasing on non uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH Kirby, R.M., Karniadakis, G.E.: De-aliasing on non uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH
34.
go back to reference Karpman, V.I.: An asymptotic solution of the Korteweg-de Vries equation. Phys. Lett. 25A(10), 708–709 (1967)CrossRef Karpman, V.I.: An asymptotic solution of the Korteweg-de Vries equation. Phys. Lett. 25A(10), 708–709 (1967)CrossRef
35.
go back to reference Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation. I. Comm. Pure Appl. Math. XXXVI, 253–290 (1983)MathSciNetCrossRefMATH Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation. I. Comm. Pure Appl. Math. XXXVI, 253–290 (1983)MathSciNetCrossRefMATH
36.
go back to reference Levy, D., Shu, C.W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–772 (2004)MathSciNetCrossRefMATH Levy, D., Shu, C.W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–772 (2004)MathSciNetCrossRefMATH
37.
go back to reference Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: Noor, A.K. (ed.) State-of-the-Art Surveys in Computational Mechanics, pp. 71–143. ASME, New York (1989) Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: Noor, A.K. (ed.) State-of-the-Art Surveys in Computational Mechanics, pp. 71–143. ASME, New York (1989)
38.
go back to reference Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)MathSciNetCrossRefMATH Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)MathSciNetCrossRefMATH
39.
go back to reference Miles, J.W.: The Korteweg-de Vries equation: a historical essay. J. Fluid Mech. 106, 131–147 (1984)CrossRefMATH Miles, J.W.: The Korteweg-de Vries equation: a historical essay. J. Fluid Mech. 106, 131–147 (1984)CrossRefMATH
40.
go back to reference Ohlsson, J.P., Schlatter, P., Fischer, P.F., Henningson, D.S.: Stabilization of the Spectral Element Method in Turbulent Flow Simulations. Lecture Notes in Computational Science and Engineering, vol. 76. Springer-Verlag, Berlin Heidelberg (2011)MATH Ohlsson, J.P., Schlatter, P., Fischer, P.F., Henningson, D.S.: Stabilization of the Spectral Element Method in Turbulent Flow Simulations. Lecture Notes in Computational Science and Engineering, vol. 76. Springer-Verlag, Berlin Heidelberg (2011)MATH
41.
go back to reference Pareschi, L., Russo, G.: Implicit–Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations, Recent trends in numerical analysis, 269–288. Nova Science Publishers, Inc., Commack (2000) Pareschi, L., Russo, G.: Implicit–Explicit Runge–Kutta Schemes for Stiff Systems of Differential Equations, Recent trends in numerical analysis, 269–288. Nova Science Publishers, Inc., Commack (2000)
42.
go back to reference Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg-de Vries equation. J. Sci. Comput. 68, 191–212 (2016)MathSciNetCrossRefMATH Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg-de Vries equation. J. Sci. Comput. 68, 191–212 (2016)MathSciNetCrossRefMATH
43.
44.
45.
go back to reference Shen, J.: A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KdV equation. SIAM J. Numer. Anal. 41(5), 1595–1619 (2003)MathSciNetCrossRefMATH Shen, J.: A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KdV equation. SIAM J. Numer. Anal. 41(5), 1595–1619 (2003)MathSciNetCrossRefMATH
46.
47.
go back to reference Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55, 231–253 (1984)MathSciNetCrossRefMATH Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55, 231–253 (1984)MathSciNetCrossRefMATH
48.
go back to reference Vos, P.E.J., Sherwin, S.J., Kirby, R.M.: From \(h\) to \(p\) efficiently: implementing finite and spectral / \(hp\) element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229, 5161–5181 (2010)MathSciNetCrossRefMATH Vos, P.E.J., Sherwin, S.J., Kirby, R.M.: From \(h\) to \(p\) efficiently: implementing finite and spectral / \(hp\) element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229, 5161–5181 (2010)MathSciNetCrossRefMATH
49.
go back to reference Walkley, M., Berzins, M.: A finite element method for the one-dimensional extended Boussinesq equations. Int. J. Numer. Meth. Fluids 29, 143–157 (1999)MathSciNetCrossRefMATH Walkley, M., Berzins, M.: A finite element method for the one-dimensional extended Boussinesq equations. Int. J. Numer. Meth. Fluids 29, 143–157 (1999)MathSciNetCrossRefMATH
50.
go back to reference Winther, R.: A conservative finite element method for the Korteweg-de Vries equation. Math. Comput. 34(149), 23–43 (1980)MathSciNetMATH Winther, R.: A conservative finite element method for the Korteweg-de Vries equation. Math. Comput. 34(149), 23–43 (1980)MathSciNetMATH
51.
go back to reference Xu, C.J., Pasquetti, R.: Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196(2), 680–704 (2004)MathSciNetCrossRefMATH Xu, C.J., Pasquetti, R.: Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196(2), 680–704 (2004)MathSciNetCrossRefMATH
52.
go back to reference Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetCrossRefMATH Xu, Y., Shu, C.W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetCrossRefMATH
53.
go back to reference Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)MathSciNetCrossRefMATH Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)MathSciNetCrossRefMATH
54.
55.
go back to reference Yi, N., Huang, Y., Liu, H.: A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)MathSciNetCrossRefMATH Yi, N., Huang, Y., Liu, H.: A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)MathSciNetCrossRefMATH
56.
go back to reference Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)CrossRefMATH Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)CrossRefMATH
57.
go back to reference Zaki, S.I.: A quintic B-spline finite elements scheme for the KdVB equation. J. Comput. Methods Appl. Mech. Eng. 188, 121–134 (2000)CrossRefMATH Zaki, S.I.: A quintic B-spline finite elements scheme for the KdVB equation. J. Comput. Methods Appl. Mech. Eng. 188, 121–134 (2000)CrossRefMATH
58.
go back to reference Zhao, P., Qin, M.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A Math. Gen. 33, 3613–3626 (2000)MathSciNetCrossRefMATH Zhao, P., Qin, M.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A Math. Gen. 33, 3613–3626 (2000)MathSciNetCrossRefMATH
Metadata
Title
High Order -Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model
Authors
Sebastian Minjeaud
Richard Pasquetti
Publication date
26-05-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0455-2

Other articles of this Issue 1/2018

Journal of Scientific Computing 1/2018 Go to the issue

Premium Partner