Skip to main content
Top
Published in: Journal of Scientific Computing 2-3/2017

18-07-2017

High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices

Author: R. Abgrall

Published in: Journal of Scientific Computing | Issue 2-3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When integrating unsteady problems using globally continuous representation of the solution, as for continuous finite element methods, one faces the problem of inverting a mass matrix. In some cases, one has to recompute this mass matrix at each time steps. In some other methods that are not directly formulated by standard variational principles, it is not clear how to write an invertible mass matrix. Hence, in this paper, we show how to avoid this problem for hyperbolic systems, and we also detail the conditions under which this is possible. Analysis and simulation support our conclusions, namely that it is possible to avoid inverting mass matrices without sacrificing the accuracy of the scheme. This paper is an extension of Abgrall et al. (in: Karasözen B, Manguoglu M, Tezer-Sezgin M, Goktepe S, Ugur O (eds) Numerical mathematics and advanced applications ENUMATH 2015. Lecture notes in computational sciences and engineering, vol 112, Springer, Berlin, 2016) and Ricchiuto and Abgrall (J Comput Phys 229(16):5653–5691, 2010).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In this paper we also show that some of the finite element methods for approximating (1) can beneficiate of the techniques developped here.
 
Literature
1.
go back to reference Abgrall, R.: Essentially non oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773–808 (2006)CrossRefMATHMathSciNet Abgrall, R.: Essentially non oscillatory residual distribution schemes for hyperbolic problems. J. Comput. Phys. 214(2), 773–808 (2006)CrossRefMATHMathSciNet
3.
go back to reference Abgrall, R.: On a class of high order schemes for hyperbolic problems. In: Proceedings of the International Conference of Mathematicians, vol. II, Seoul (2014) Abgrall, R.: On a class of high order schemes for hyperbolic problems. In: Proceedings of the International Conference of Mathematicians, vol. II, Seoul (2014)
4.
go back to reference Abgrall, R., Bacigaluppi, P., Tokareva, S.: How to avoid mass matrix for linear hyperbolic problems. In: Karasözen, B., Manguoglu, M., Tezer-Sezgin, M., Goktepe, S., Ugur, O. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Sciences and Engineering, vol. 112. Springer, Berlin (2016) Abgrall, R., Bacigaluppi, P., Tokareva, S.: How to avoid mass matrix for linear hyperbolic problems. In: Karasözen, B., Manguoglu, M., Tezer-Sezgin, M., Goktepe, S., Ugur, O. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Sciences and Engineering, vol. 112. Springer, Berlin (2016)
5.
go back to reference Abgrall, R., de Santis, D.: Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier–Stokes equations. J. Comput. Phys. 283, 329–359 (2015)CrossRefMATHMathSciNet Abgrall, R., de Santis, D.: Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier–Stokes equations. J. Comput. Phys. 283, 329–359 (2015)CrossRefMATHMathSciNet
7.
go back to reference Abgrall, R., Trefilick, J.: An example of high order residual distribution scheme using non-lagrange elements. J. Sci. Comput. 45(1–3), 64–89 (2010)MathSciNet Abgrall, R., Trefilick, J.: An example of high order residual distribution scheme using non-lagrange elements. J. Sci. Comput. 45(1–3), 64–89 (2010)MathSciNet
8.
go back to reference Bourlioux, A., lyton, A.T., Minion, M.L.: High-order multi-implicit spectral defered correction methods for problem of reacting flow. J. Comput. Phys. 168, 464–499 (2001)CrossRefMathSciNet Bourlioux, A., lyton, A.T., Minion, M.L.: High-order multi-implicit spectral defered correction methods for problem of reacting flow. J. Comput. Phys. 168, 464–499 (2001)CrossRefMathSciNet
9.
go back to reference Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximation of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)CrossRefMATHMathSciNet Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximation of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)CrossRefMATHMathSciNet
10.
go back to reference Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: High order triangular finite element with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001)CrossRefMATHMathSciNet Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: High order triangular finite element with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001)CrossRefMATHMathSciNet
11.
go back to reference de Luna, M.Q., Kuzmin, D., Tomov, V.Z., Kolev, T., Dobrev, V.A., Rieben, R.N., Anderson, R.: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys. 334, 102–124 (2017)CrossRefMathSciNet de Luna, M.Q., Kuzmin, D., Tomov, V.Z., Kolev, T., Dobrev, V.A., Rieben, R.N., Anderson, R.: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation. J. Comput. Phys. 334, 102–124 (2017)CrossRefMathSciNet
12.
go back to reference Donea, J., Guilani, S., Laval, H.: Time-accurate solution of advection–diffusuin problems by finite elements. Comput. Methods Appl. Mech. Eng. 45(1–3), 123–145 (1984)CrossRefMATH Donea, J., Guilani, S., Laval, H.: Time-accurate solution of advection–diffusuin problems by finite elements. Comput. Methods Appl. Mech. Eng. 45(1–3), 123–145 (1984)CrossRefMATH
13.
go back to reference Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)CrossRefMATHMathSciNet Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)CrossRefMATHMathSciNet
14.
go back to reference Ern, A., di Pietro, D.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2010) Ern, A., di Pietro, D.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2010)
15.
go back to reference Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). http://gmsh.info/ Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). http://​gmsh.​info/​
16.
go back to reference Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)MATH Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)MATH
17.
go back to reference Guermond, J.L., Pasquetti, R.: A correction technique for dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)CrossRefMATHMathSciNet Guermond, J.L., Pasquetti, R.: A correction technique for dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)CrossRefMATHMathSciNet
18.
go back to reference Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics. III: the generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)CrossRefMATHMathSciNet Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics. III: the generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)CrossRefMATHMathSciNet
20.
go back to reference Jund, S., Salmon, S.: Arbitrary high-order finite element scheme and high-order mass lumping. Int. J. Appl. Math. Comput. Sci. 17(3), 375–393 (2007)CrossRefMATHMathSciNet Jund, S., Salmon, S.: Arbitrary high-order finite element scheme and high-order mass lumping. Int. J. Appl. Math. Comput. Sci. 17(3), 375–393 (2007)CrossRefMATHMathSciNet
22.
go back to reference Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)CrossRefMATHMathSciNet Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)CrossRefMATHMathSciNet
23.
go back to reference Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the defered correction time discretisation. J. Comput. Math. 26(5), 633–656 (2008)MATHMathSciNet Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the defered correction time discretisation. J. Comput. Math. 26(5), 633–656 (2008)MATHMathSciNet
24.
go back to reference Löhner, R., Morgan, K., Zienkiewicz, O.C.: The solution of non-linear hyperbolic equation system by the finite element methods. Int. J. Numer. Methods Fluids 4, 1043–1063 (1984)CrossRefMATH Löhner, R., Morgan, K., Zienkiewicz, O.C.: The solution of non-linear hyperbolic equation system by the finite element methods. Int. J. Numer. Methods Fluids 4, 1043–1063 (1984)CrossRefMATH
25.
go back to reference Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equaions. Commun. Math. Phys. 1(3), 471–500 (2003)MATH Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equaions. Commun. Math. Phys. 1(3), 471–500 (2003)MATH
26.
go back to reference Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual-distribution schemes for time dependent problems. J. Comput. Phys. 229(16), 5653–5691 (2010)CrossRefMATHMathSciNet Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual-distribution schemes for time dependent problems. J. Comput. Phys. 229(16), 5653–5691 (2010)CrossRefMATHMathSciNet
27.
go back to reference Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Inter-Science, New-York (1967)MATH Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Inter-Science, New-York (1967)MATH
Metadata
Title
High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices
Author
R. Abgrall
Publication date
18-07-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2-3/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0498-4

Other articles of this Issue 2-3/2017

Journal of Scientific Computing 2-3/2017 Go to the issue

Premium Partner