Skip to main content
Top

2019 | OriginalPaper | Chapter

High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models

Authors : Alina Chertock, Alexander Kurganov

Published in: Active Particles, Volume 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many microorganisms exhibit a special pattern formation at the presence of a chemoattractant, food, light, or areas with high oxygen concentration. Collective cell movement can be described by a system of nonlinear PDEs on both macroscopic and microscopic levels. The classical PDE chemotaxis model is the Patlak-Keller-Segel system, which consists of a convection-diffusion equation for the cell density and a reaction-diffusion equation for the chemoattractant concentration. At the cellular (microscopic) level, a multiscale chemotaxis models can be used. These models are based on a combination of the macroscopic evolution equation for chemoattractant and microscopic models for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a local turning kernel operator that describes the velocity change of the cells.
A common property of the chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in solutions rapidly growing in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. In either case, capturing such singular solutions numerically is a challenging problem and the use of higher-order methods and/or adaptive strategies is often necessary. In addition, positivity preserving is an absolutely crucial property a good numerical method used to simulate chemotaxis should satisfy: this is the only way to guarantee a nonlinear stability of the method. For kinetic chemotaxis systems, it is also essential that numerical methods provide a consistent and stable discretization in certain asymptotic regimes.
In this paper, we review some of the recent advances in developing of high-resolution finite-volume and finite-difference numerical methods that possess the aforementioned properties of the chemotaxis-type systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adler, A.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341–356 (1975) Adler, A.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341–356 (1975)
2.
go back to reference Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9(2), 147–177 (1980)MathSciNetMATH Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9(2), 147–177 (1980)MathSciNetMATH
3.
go back to reference Arpaia, L., Ricchiuto, M.: r-adaptation for shallow water flows: conservation, well balancedness, efficiency. Comput. & Fluids 160, 175–203 (2018) Arpaia, L., Ricchiuto, M.: r-adaptation for shallow water flows: conservation, well balancedness, efficiency. Comput. & Fluids 160, 175–203 (2018)
4.
go back to reference Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2-3), 151–167 (1997). Special issue on time integration (Amsterdam, 1996) Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2-3), 151–167 (1997). Special issue on time integration (Amsterdam, 1996)
5.
go back to reference Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetMATH Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetMATH
6.
go back to reference Bialké, J., Löwen, H., Speck, T.: Microscopic theory for the phase separation of self-propelled repulsive disks. EPL (Europhysics Letters) 103(3), 30,008 (2013) Bialké, J., Löwen, H., Speck, T.: Microscopic theory for the phase separation of self-propelled repulsive disks. EPL (Europhysics Letters) 103(3), 30,008 (2013)
7.
go back to reference Bollermann, A., Noelle, S., Lukáčová-Medviďová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10(2), 371–404 (2011)MathSciNetMATH Bollermann, A., Noelle, S., Lukáčová-Medviďová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10(2), 371–404 (2011)MathSciNetMATH
8.
go back to reference Bonner, J.T.: The cellular slime molds, 2nd edn. Princeton University Press, Princeton, New Jersey (1967) Bonner, J.T.: The cellular slime molds, 2nd edn. Princeton University Press, Princeton, New Jersey (1967)
9.
go back to reference Bournaveas, N., Calvez, V.: Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data 26(5), 1871–1895 (2009) Bournaveas, N., Calvez, V.: Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data 26(5), 1871–1895 (2009)
10.
go back to reference Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991) Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991)
11.
go back to reference Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995) Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)
12.
go back to reference Calvez, V., Carrillo, J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. (9) 86(2), 155–175 (2006) Calvez, V., Carrillo, J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. (9) 86(2), 155–175 (2006)
13.
go back to reference Calvez, V., Perthame, B., Sharifi Tabar, M.: Modified Keller-Segel system and critical mass for the log interaction kernel. In: Stochastic analysis and partial differential equations, Contemp. Math., vol. 429, pp. 45–62. Amer. Math. Soc., Providence, RI (2007) Calvez, V., Perthame, B., Sharifi Tabar, M.: Modified Keller-Segel system and critical mass for the log interaction kernel. In: Stochastic analysis and partial differential equations, Contemp. Math., vol. 429, pp. 45–62. Amer. Math. Soc., Providence, RI (2007)
14.
go back to reference Carrillo, J.A., Yan, B.: An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis. Multiscale Model. Simul. 11(1), 336–361 (2013)MathSciNetMATH Carrillo, J.A., Yan, B.: An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis. Multiscale Model. Simul. 11(1), 336–361 (2013)MathSciNetMATH
15.
go back to reference Chalub, F.A.C.C., Markowich, P.A., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142(1-2), 123–141 (2004)MathSciNetMATH Chalub, F.A.C.C., Markowich, P.A., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142(1-2), 123–141 (2004)MathSciNetMATH
16.
go back to reference Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44(1), 327–350 (2018)MathSciNetMATH Chertock, A., Epshteyn, Y., Hu, H., Kurganov, A.: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44(1), 327–350 (2018)MathSciNetMATH
17.
go back to reference Chertock, A., Fellner, K., Kurganov, A., Lorz, A., Markowich, P.A.: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach. J. Fluid Mech. 694, 155–190 (2012)MathSciNetMATH Chertock, A., Fellner, K., Kurganov, A., Lorz, A., Markowich, P.A.: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach. J. Fluid Mech. 694, 155–190 (2012)MathSciNetMATH
18.
go back to reference Chertock, A., Kurganov, A.: A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)MathSciNetMATH Chertock, A., Kurganov, A.: A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)MathSciNetMATH
19.
go back to reference Chertock, A., Kurganov, A., Lukáčová-Medviďová, M., Özcan, c.N.: An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinet. Relat. Models 12, 195–216 (2019)MATH Chertock, A., Kurganov, A., Lukáčová-Medviďová, M., Özcan, c.N.: An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinet. Relat. Models 12, 195–216 (2019)MATH
20.
go back to reference Chertock, A., Kurganov, A., Ricchiuto, M., Wu, T.: Adaptive moving mesh upwind scheme for the two-species chemotaxis model. Comput. Math. Appl. 77, 3172–3185 (2019)MathSciNetMATH Chertock, A., Kurganov, A., Ricchiuto, M., Wu, T.: Adaptive moving mesh upwind scheme for the two-species chemotaxis model. Comput. Math. Appl. 77, 3172–3185 (2019)MathSciNetMATH
21.
go back to reference Chertock, A., Kurganov, A., Wang, X., Wu, Y.: On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5(1), 51–95 (2012)MathSciNetMATH Chertock, A., Kurganov, A., Wang, X., Wu, Y.: On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5(1), 51–95 (2012)MathSciNetMATH
22.
23.
go back to reference Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971) Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)
24.
go back to reference Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in ℝ2. European J. Appl. Math. 22(6), 553–580 (2011)MathSciNetMATH Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in ℝ2. European J. Appl. Math. 22(6), 553–580 (2011)MathSciNetMATH
25.
go back to reference Eisenbach, M., Lengeler, J.W., Varon, M., Gutnick, D., Meili, R., Firtel, R.A., Segall, J.E., Omann, G.M., Tamada, A., Murakami, F.: Chemotaxis. Imperial College Press (2004) Eisenbach, M., Lengeler, J.W., Varon, M., Gutnick, D., Meili, R., Firtel, R.A., Segall, J.E., Omann, G.M., Tamada, A., Murakami, F.: Chemotaxis. Imperial College Press (2004)
26.
go back to reference Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. J. Sci. Comput. 53(3), 689–713 (2012)MathSciNetMATH Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. J. Sci. Comput. 53(3), 689–713 (2012)MathSciNetMATH
27.
go back to reference Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40(1-3), 211–256 (2009)MathSciNetMATH Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40(1-3), 211–256 (2009)MathSciNetMATH
28.
go back to reference Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008)MathSciNetMATH Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47, 386–408 (2008)MathSciNetMATH
29.
go back to reference Espejo, E.E., Stevens, A., Suzuki, T.: Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species. Differential Integral Equations 25(3-4), 251–288 (2012)MathSciNetMATH Espejo, E.E., Stevens, A., Suzuki, T.: Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species. Differential Integral Equations 25(3-4), 251–288 (2012)MathSciNetMATH
30.
go back to reference Espejo, E.E., Stevens, A., Velázquez, J.J.L.: A note on non-simultaneous blow-up for a drift-diffusion model. Differential Integral Equations 23(5-6), 451–462 (2010)MathSciNetMATH Espejo, E.E., Stevens, A., Velázquez, J.J.L.: A note on non-simultaneous blow-up for a drift-diffusion model. Differential Integral Equations 23(5-6), 451–462 (2010)MathSciNetMATH
31.
go back to reference Espejo, E.E., Vilches, K., Conca, C.: Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in \(\mathbb {R}^2\). European J. Appl. Math. 24, 297–313 (2013) Espejo, E.E., Vilches, K., Conca, C.: Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in \(\mathbb {R}^2\). European J. Appl. Math. 24, 297–313 (2013)
32.
go back to reference Espejo Arenas, E.E., Stevens, A., Velázquez, J.J.L.: Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis (Munich) 29(3), 317–338 (2009)MathSciNetMATH Espejo Arenas, E.E., Stevens, A., Velázquez, J.J.L.: Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis (Munich) 29(3), 317–338 (2009)MathSciNetMATH
33.
go back to reference Fasano, A., Mancini, A., Primicerio, M.: Equilibrium of two populations subject to chemotaxis. Math. Models Methods Appl. Sci. 14, 503–533 (2004)MathSciNetMATH Fasano, A., Mancini, A., Primicerio, M.: Equilibrium of two populations subject to chemotaxis. Math. Models Methods Appl. Sci. 14, 503–533 (2004)MathSciNetMATH
34.
go back to reference Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)MathSciNetMATH Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)MathSciNetMATH
35.
go back to reference Filbet, F., Yang, C.: Numerical simulations of kinetic models for chemotaxis. SIAM J. Sci. Comput. 36(3), B348–B366 (2014)MathSciNetMATH Filbet, F., Yang, C.: Numerical simulations of kinetic models for chemotaxis. SIAM J. Sci. Comput. 36(3), B348–B366 (2014)MathSciNetMATH
36.
go back to reference Gajewski, H., Zacharias, K., Gröger, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Mathematische Nachrichten 195(1), 77–114 (1998)MathSciNetMATH Gajewski, H., Zacharias, K., Gröger, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Mathematische Nachrichten 195(1), 77–114 (1998)MathSciNetMATH
37.
go back to reference Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24, 633–683 (1997)MathSciNetMATH Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24, 633–683 (1997)MathSciNetMATH
38.
go back to reference Herrero, M.A., Medina, E., Velázquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739 (1997)MathSciNetMATH Herrero, M.A., Medina, E., Velázquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739 (1997)MathSciNetMATH
39.
go back to reference Herrero, M.A., Velázquez, J.J.: Chemotactic collapse for the iKeller-Segel model. J. Math. Biol. 35(2), 177–194 (1996)MathSciNetMATH Herrero, M.A., Velázquez, J.J.: Chemotactic collapse for the iKeller-Segel model. J. Math. Biol. 35(2), 177–194 (1996)MathSciNetMATH
40.
go back to reference Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24, 633–683 (1997)MathSciNetMATH Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24, 633–683 (1997)MathSciNetMATH
41.
go back to reference Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61(3), 751–775 (electronic) (2000) Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61(3), 751–775 (electronic) (2000)
42.
go back to reference Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. in Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. in Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH
43.
go back to reference Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1-2), 183–217 (2009)MathSciNetMATH Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1-2), 183–217 (2009)MathSciNetMATH
44.
go back to reference Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MATH Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MATH
45.
go back to reference Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)MATH Horstmann, D.: From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)MATH
46.
go back to reference Huang, W., Russell, R.D.: Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174. Springer, New York (2011) Huang, W., Russell, R.D.: Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174. Springer, New York (2011)
47.
go back to reference Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)MathSciNetMATH Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)MathSciNetMATH
48.
go back to reference Hwang, H.J., Kang, K., Stevens, A.: Drift-diffusion limits of kinetic models for chemotaxis: a generalization. Discrete Contin. Dyn. Syst. Ser. B 5(2), 319–334 (2005)MathSciNetMATH Hwang, H.J., Kang, K., Stevens, A.: Drift-diffusion limits of kinetic models for chemotaxis: a generalization. Discrete Contin. Dyn. Syst. Ser. B 5(2), 319–334 (2005)MathSciNetMATH
49.
go back to reference Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329(2), 819–824 (1992)MathSciNetMATH Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329(2), 819–824 (1992)MathSciNetMATH
50.
go back to reference Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (electronic) (1998) Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (electronic) (1998)
51.
go back to reference Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH
52.
go back to reference Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)MATH Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)MATH
53.
go back to reference Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)MATH Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)MATH
54.
go back to reference Kurganov, A., Liu, Y.: New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 231, 8114–8132 (2012)MathSciNetMATH Kurganov, A., Liu, Y.: New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 231, 8114–8132 (2012)MathSciNetMATH
55.
go back to reference Kurganov, A., Lukáčová-Medviďová, M.: Numerical study of two-species chemotaxis models. Discrete Contin. Dyn. Syst. Ser. B 19, 131–152 (2014)MathSciNetMATH Kurganov, A., Lukáčová-Medviďová, M.: Numerical study of two-species chemotaxis models. Discrete Contin. Dyn. Syst. Ser. B 19, 131–152 (2014)MathSciNetMATH
56.
go back to reference Kurganov, A., Qu, Z., Rozanova, O., Wu, T.: Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs. Applications to compressible Euler equations and granular hydrodynamics Submitted Kurganov, A., Qu, Z., Rozanova, O., Wu, T.: Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs. Applications to compressible Euler equations and granular hydrodynamics Submitted
57.
go back to reference Kurokiba, M., Ogawa, T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Diff. Integral Eqns 4, 427–452 (2003)MathSciNetMATH Kurokiba, M., Ogawa, T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Diff. Integral Eqns 4, 427–452 (2003)MathSciNetMATH
58.
go back to reference van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)MATH van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)MATH
59.
go back to reference Levy, D., Requeijo, T.: Modeling group dynamics of phototaxis: from particle systems to PDEs. Discrete Contin. Dyn. Syst. Ser. B 9(1), 103–128 (electronic) (2008) Levy, D., Requeijo, T.: Modeling group dynamics of phototaxis: from particle systems to PDEs. Discrete Contin. Dyn. Syst. Ser. B 9(1), 103–128 (electronic) (2008)
60.
go back to reference Lie, K.A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24(4), 1157–1174 (2003)MathSciNetMATH Lie, K.A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24(4), 1157–1174 (2003)MathSciNetMATH
61.
go back to reference Liebchen, B., Löwen, H.: Modelling chemotaxis of microswimmers: from individual to collective behavior. arXiv preprint arXiv:1802.07933 (2018) Liebchen, B., Löwen, H.: Modelling chemotaxis of microswimmers: from individual to collective behavior. arXiv preprint arXiv:1802.07933 (2018)
62.
go back to reference Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72(1), 1–27 (1988)MathSciNetMATH Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72(1), 1–27 (1988)MathSciNetMATH
63.
go back to reference Marchuk, G.I.: Splitting and alternating direction methods. In: Handbook of numerical analysis, Vol. I, Handb. Numer. Anal., I, pp. 197–462. North-Holland, Amsterdam (1990) Marchuk, G.I.: Splitting and alternating direction methods. In: Handbook of numerical analysis, Vol. I, Handb. Numer. Anal., I, pp. 197–462. North-Holland, Amsterdam (1990)
64.
go back to reference Marrocco, A.: 2d simulation of chemotaxis bacteria aggregation. M2AN Math. Model. Numer. Anal. 37, 617–630 (2003) Marrocco, A.: 2d simulation of chemotaxis bacteria aggregation. M2AN Math. Model. Numer. Anal. 37, 617–630 (2003)
65.
go back to reference Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. pp. 37–55 Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. pp. 37–55
66.
go back to reference Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)MathSciNetMATH Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)MathSciNetMATH
67.
go back to reference Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973) Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)
68.
go back to reference Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)MathSciNetMATH Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)MathSciNetMATH
69.
go back to reference Ni, W.M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45(1), 9–18 (1998)MathSciNetMATH Ni, W.M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45(1), 9–18 (1998)MathSciNetMATH
70.
go back to reference Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26(3), 263–298 (1988)MathSciNetMATH Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26(3), 263–298 (1988)MathSciNetMATH
71.
go back to reference Othmer, H.G., Hillen, T.: The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J. Appl. Math. 62(4), 1222–1250 (electronic) (2002) Othmer, H.G., Hillen, T.: The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J. Appl. Math. 62(4), 1222–1250 (electronic) (2002)
72.
go back to reference Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1-2), 129–155 (2005)MathSciNetMATH Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1-2), 129–155 (2005)MathSciNetMATH
73.
go back to reference Patlak, C.S.: Random walk with persistence and external bias. Bull. Math: Biophys. 15, 311–338 (1953)MathSciNetMATH Patlak, C.S.: Random walk with persistence and external bias. Bull. Math: Biophys. 15, 311–338 (1953)MathSciNetMATH
74.
go back to reference Pedley, T.J., Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24(1), 313–358 (1992)MathSciNetMATH Pedley, T.J., Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24(1), 313–358 (1992)MathSciNetMATH
75.
go back to reference Perthame, B.: PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49, 539–564 (2004)MathSciNetMATH Perthame, B.: PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math. 49, 539–564 (2004)MathSciNetMATH
76.
go back to reference Perthame, B.: Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007) Perthame, B.: Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)
77.
go back to reference Pohl, O., Stark, H.: Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 112(23), 238,303 (2014) Pohl, O., Stark, H.: Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 112(23), 238,303 (2014)
78.
go back to reference Prescott, L.M., Harley, J.P., Klein, D.A.: Microbiology, 3rd edn. Wm. C. Brown Publishers, Chicago, London (1996) Prescott, L.M., Harley, J.P., Klein, D.A.: Microbiology, 3rd edn. Wm. C. Brown Publishers, Chicago, London (1996)
79.
go back to reference Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)MathSciNetMATH Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)MathSciNetMATH
80.
go back to reference Sleeman, B.D., Ward, M.J., Wei, J.C.: The existence and stability of spike patterns in a chemotaxis model. SIAM J. Appl. Math. 65(3), 790–817 (electronic) (2005) Sleeman, B.D., Ward, M.J., Wei, J.C.: The existence and stability of spike patterns in a chemotaxis model. SIAM J. Appl. Math. 65(3), 790–817 (electronic) (2005)
81.
go back to reference Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61(1), 183–212 (electronic) (2000) Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61(1), 183–212 (electronic) (2000)
82.
go back to reference Stevens, A., Othmer, H.G.: Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081 (1997)MathSciNetMATH Stevens, A., Othmer, H.G.: Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081 (1997)MathSciNetMATH
83.
go back to reference Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetMATH Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetMATH
84.
go back to reference Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Computational Methods in Applied Mathematics 10(2), 219–232 (2010)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Computational Methods in Applied Mathematics 10(2), 219–232 (2010)MathSciNetMATH
85.
go back to reference Stroock, D.W.: Some stochastic processes which arise from a model of the motion of a bacterium. Probab. Theory Relat. Fields 28(4), 305–315 (1974)MATH Stroock, D.W.: Some stochastic processes which arise from a model of the motion of a bacterium. Probab. Theory Relat. Fields 28(4), 305–315 (1974)MATH
86.
go back to reference Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)MathSciNetMATH Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)MathSciNetMATH
87.
go back to reference Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (electronic) (2003) Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (electronic) (2003)
88.
go back to reference Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. PNAS 102, 2277–2282 (2005)MATH Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. PNAS 102, 2277–2282 (2005)MATH
89.
go back to reference Tyson, R., Lubkin, S.R., Murray, J.D.: A minimal mechanism for bacterial pattern formation. Proc. Roy. Soc. Lond. B 266, 299–304 (1999) Tyson, R., Lubkin, S.R., Murray, J.D.: A minimal mechanism for bacterial pattern formation. Proc. Roy. Soc. Lond. B 266, 299–304 (1999)
90.
go back to reference Tyson, R., Lubkin, S.R., Murray, J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38(4), 359–375 (1999)MathSciNetMATH Tyson, R., Lubkin, S.R., Murray, J.D.: Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38(4), 359–375 (1999)MathSciNetMATH
91.
go back to reference Tyson, R., Stern, L.G., LeVeque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000)MathSciNetMATH Tyson, R., Stern, L.G., LeVeque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000)MathSciNetMATH
92.
go back to reference Vabishchevich, P.N.: Additive operator-difference schemes. De Gruyter, Berlin (2014). Splitting schemes Vabishchevich, P.N.: Additive operator-difference schemes. De Gruyter, Berlin (2014). Splitting schemes
93.
go back to reference Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (electronic) (2004) Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (electronic) (2004)
94.
go back to reference Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224–1248 (electronic) (2004) Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224–1248 (electronic) (2004)
95.
go back to reference Wang, X.: Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal. 31(3), 535–560 (electronic) (2000) Wang, X.: Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal. 31(3), 535–560 (electronic) (2000)
96.
go back to reference Wolansky, G.: Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math. 13, 641–661 (2002)MathSciNetMATH Wolansky, G.: Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math. 13, 641–661 (2002)MathSciNetMATH
97.
go back to reference Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H.: Spatio-temporal patterns generated by S. typhimurium. Biophys. J. 68, 2181–2189 (1995) Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H.: Spatio-temporal patterns generated by S. typhimurium. Biophys. J. 68, 2181–2189 (1995)
98.
go back to reference Yeomans, J.: The hydrodynamics of active systems. In: C.N. Likas, F. Sciortino, E. Zaccarelli, P. Ziherl (eds.) Proceedings of the International School of Physics “Enrico Fermi”, pp. 383–415. IOS, Amsterdam, SIF, Bologna (2016) Yeomans, J.: The hydrodynamics of active systems. In: C.N. Likas, F. Sciortino, E. Zaccarelli, P. Ziherl (eds.) Proceedings of the International School of Physics “Enrico Fermi”, pp. 383–415. IOS, Amsterdam, SIF, Bologna (2016)
99.
go back to reference Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetMATH Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetMATH
Metadata
Title
High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models
Authors
Alina Chertock
Alexander Kurganov
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20297-2_4

Premium Partners