Skip to main content
Top

2019 | OriginalPaper | Chapter

Aggregation-Diffusion Equations: Dynamics, Asymptotics, and Singular Limits

Authors : José A. Carrillo, Katy Craig, Yao Yao

Published in: Active Particles, Volume 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the past 15 years, aggregation-diffusion equations have become widespread in biological applications and have also attracted significant mathematical interest, due to their competing forces at different length scales. These competing forces lead to rich dynamics, including symmetrization, stabilization, and metastability, as well as sharp dichotomies separating well-posedness from finite time blow-up. In the present work, we review known analytical results for aggregation-diffusion equations and consider singular limits of these equations, including the slow diffusion limit, which leads to the constrained aggregation equation, and localized aggregation and vanishing diffusion limits, which lead to metastability behavior. We also review the range of numerical methods available for simulating solutions, with special attention devoted to recent advances in deterministic particle methods. We close by applying such a method—the blob method for diffusion—to showcase key properties of the dynamics of aggregation-diffusion equations and related singular limits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Alexander, I. Kim, and Y. Yao. Quasi-static evolution and congested crowd transport. Nonlinearity, 27(4):823–858, 2014.MathSciNetMATH D. Alexander, I. Kim, and Y. Yao. Quasi-static evolution and congested crowd transport. Nonlinearity, 27(4):823–858, 2014.MathSciNetMATH
2.
go back to reference L. N. Almeida, F. Bubba, B. Perthame, and C. Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. preprint arXiv:1803.10629, 2018. L. N. Almeida, F. Bubba, B. Perthame, and C. Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. preprint arXiv:1803.10629, 2018.
3.
go back to reference L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.
4.
5.
go back to reference R. Bailo, J. A. Carrillo, and J. Hu. Fully discrete positivity-preserving and energy-dissipative schemes for nonlinear nonlocal equations with a gradient flow structure. preprint arXiv:, 2018. R. Bailo, J. A. Carrillo, and J. Hu. Fully discrete positivity-preserving and energy-dissipative schemes for nonlinear nonlocal equations with a gradient flow structure. preprint arXiv:, 2018.
6.
go back to reference D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal., 209(3):1055–1088, 2013.MathSciNetMATH D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal., 209(3):1055–1088, 2013.MathSciNetMATH
7.
go back to reference J. T. Beale and A. Majda. Vortex methods. I. Convergence in three dimensions. Math. Comp., 39(159):1–27, 1982. J. T. Beale and A. Majda. Vortex methods. I. Convergence in three dimensions. Math. Comp., 39(159):1–27, 1982.
8.
go back to reference J. T. Beale and A. Majda. Vortex methods. II. Higher order accuracy in two and three dimensions. Math. Comp., 39(159):29–52, 1982. J. T. Beale and A. Majda. Vortex methods. II. Higher order accuracy in two and three dimensions. Math. Comp., 39(159):29–52, 1982.
9.
go back to reference J. Bedrossian. Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion. Appl. Math. Lett., 24(11):1927–1932, 2011.MathSciNetMATH J. Bedrossian. Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion. Appl. Math. Lett., 24(11):1927–1932, 2011.MathSciNetMATH
10.
go back to reference J. Bedrossian. Intermediate asymptotics for critical and supercritical aggregation equations and Patlak–Keller–Segel models. Commun. Math. Sci., 9(4):1143–1161, 2011.MathSciNetMATH J. Bedrossian. Intermediate asymptotics for critical and supercritical aggregation equations and Patlak–Keller–Segel models. Commun. Math. Sci., 9(4):1143–1161, 2011.MathSciNetMATH
11.
go back to reference J. Bedrossian and I. C. Kim. Global existence and finite time blow-up for critical Patlak–Keller–Segel models with inhomogeneous diffusion. SIAM J. Math. Anal., 45(3):934–964, 2013.MathSciNetMATH J. Bedrossian and I. C. Kim. Global existence and finite time blow-up for critical Patlak–Keller–Segel models with inhomogeneous diffusion. SIAM J. Math. Anal., 45(3):934–964, 2013.MathSciNetMATH
12.
go back to reference J. Bedrossian and N. Masmoudi. Existence, uniqueness and Lipschitz dependence for Patlak–Keller–Segel and Navier–Stokes in \(\mathbb {R}^2\) with measure-valued initial data. Arch. Rat. Mech. Anal., 214(3):717–801, 2014. J. Bedrossian and N. Masmoudi. Existence, uniqueness and Lipschitz dependence for Patlak–Keller–Segel and Navier–Stokes in \(\mathbb {R}^2\) with measure-valued initial data. Arch. Rat. Mech. Anal., 214(3):717–801, 2014.
13.
go back to reference J. Bedrossian and N. Rodríguez. Inhomogeneous Patlak–Keller–Segel models and aggregation equations with nonlinear diffusion in \(\mathbb {R}^d\). Discrete Contin. Dyn. Syst. Ser. B, 19(5):1279–1309, 2014. J. Bedrossian and N. Rodríguez. Inhomogeneous Patlak–Keller–Segel models and aggregation equations with nonlinear diffusion in \(\mathbb {R}^d\). Discrete Contin. Dyn. Syst. Ser. B, 19(5):1279–1309, 2014.
14.
go back to reference J. Bedrossian, N. Rodríguez, and A. L. Bertozzi. Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion. Nonlinearity, 24(6):1683–1714, 2011.MathSciNetMATH J. Bedrossian, N. Rodríguez, and A. L. Bertozzi. Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion. Nonlinearity, 24(6):1683–1714, 2011.MathSciNetMATH
15.
go back to reference N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci., 25(9):1663–1763, 2015.MathSciNetMATH N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci., 25(9):1663–1763, 2015.MathSciNetMATH
16.
go back to reference J. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84:375–393, 2000.MathSciNetMATH J. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84:375–393, 2000.MathSciNetMATH
17.
go back to reference J. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: PROCEEDINGS AND SURVEYS, 54:1–17, 2016.MathSciNetMATH J. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: PROCEEDINGS AND SURVEYS, 54:1–17, 2016.MathSciNetMATH
18.
go back to reference J.-D. Benamou, G. Carlier, Q. Mérigot, and E. Oudet. Discretization of functionals involving the Monge-Ampère operator. Numer. Math., 134(3):611–636, 2016.MathSciNetMATH J.-D. Benamou, G. Carlier, Q. Mérigot, and E. Oudet. Discretization of functionals involving the Monge-Ampère operator. Numer. Math., 134(3):611–636, 2016.MathSciNetMATH
19.
go back to reference D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér., 31(5):615–641, 1997.MathSciNetMATH D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér., 31(5):615–641, 1997.MathSciNetMATH
20.
go back to reference A. L. Bertozzi, J. A. Carrillo, and T. Laurent. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity, 22(3):683–710, 2009.MathSciNetMATH A. L. Bertozzi, J. A. Carrillo, and T. Laurent. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity, 22(3):683–710, 2009.MathSciNetMATH
21.
go back to reference A. L. Bertozzi, J. B. Garnett, and T. Laurent. Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal., 44(2):651–681, 2012.MathSciNetMATH A. L. Bertozzi, J. B. Garnett, and T. Laurent. Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal., 44(2):651–681, 2012.MathSciNetMATH
22.
go back to reference A. L. Bertozzi, T. Laurent, and F. Léger. Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci., 22(suppl. 1):1140005, 39, 2012. A. L. Bertozzi, T. Laurent, and F. Léger. Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci., 22(suppl. 1):1140005, 39, 2012.
23.
go back to reference A. L. Bertozzi, T. Laurent, and J. Rosado. Lp theory for the multidimensional aggregation equation. Comm. Pure Appl. Math., 64(1):45–83, 2011.MathSciNetMATH A. L. Bertozzi, T. Laurent, and J. Rosado. Lp theory for the multidimensional aggregation equation. Comm. Pure Appl. Math., 64(1):45–83, 2011.MathSciNetMATH
24.
go back to reference M. Bessemoulin-Chatard and F. Filbet. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., 34(5):B559–B583, 2012.MathSciNetMATH M. Bessemoulin-Chatard and F. Filbet. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., 34(5):B559–B583, 2012.MathSciNetMATH
25.
go back to reference S. Bian and J.-G. Liu. Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent m > 0. Comm. Math. Phy., 323(3):1017–1070, 2013. S. Bian and J.-G. Liu. Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent m > 0. Comm. Math. Phy., 323(3):1017–1070, 2013.
26.
go back to reference A. Blanchet, V. Calvez, and J. A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal., 46(2):691–721, 2008.MathSciNetMATH A. Blanchet, V. Calvez, and J. A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal., 46(2):691–721, 2008.MathSciNetMATH
27.
go back to reference A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller–Segel model. J. Funct. Anal., 262(5):2142–2230, 2012.MathSciNetMATH A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller–Segel model. J. Funct. Anal., 262(5):2142–2230, 2012.MathSciNetMATH
28.
go back to reference A. Blanchet, J. A. Carrillo, and P. Laurençot. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ., 35(2):133–168, 2009.MathSciNetMATH A. Blanchet, J. A. Carrillo, and P. Laurençot. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ., 35(2):133–168, 2009.MathSciNetMATH
29.
go back to reference A. Blanchet, J. A. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak–Keller–Segel model in \(\mathbb {R}^2\). Comm. Pure Appl. Math., 61(10):1449–1481, 2008. A. Blanchet, J. A. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak–Keller–Segel model in \(\mathbb {R}^2\). Comm. Pure Appl. Math., 61(10):1449–1481, 2008.
30.
go back to reference A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernández. Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller–Segel model. J. Math. Anal. Appl., 361:533–542, 2008.MathSciNetMATH A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernández. Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller–Segel model. J. Math. Anal. Appl., 361:533–542, 2008.MathSciNetMATH
31.
go back to reference A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Eq., 2006:1–33, 2006.MathSciNetMATH A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Eq., 2006:1–33, 2006.MathSciNetMATH
32.
go back to reference M. Bodnar and J. J. L. Velazquez. An integro-differential equation arising as a limit of individual cell-based models. J. Differential Equations, 222(2):341–380, 2006.MathSciNetMATH M. Bodnar and J. J. L. Velazquez. An integro-differential equation arising as a limit of individual cell-based models. J. Differential Equations, 222(2):341–380, 2006.MathSciNetMATH
33.
go back to reference F. Bolley, J. A. Cañizo, and J. A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci., 21(11):2179–2210, 2011.MathSciNetMATH F. Bolley, J. A. Cañizo, and J. A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci., 21(11):2179–2210, 2011.MathSciNetMATH
34.
go back to reference A. Burchard, R. Choksi, and I. Topaloglu. Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J., 67(1):375–395, 2018.MathSciNetMATH A. Burchard, R. Choksi, and I. Topaloglu. Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J., 67(1):375–395, 2018.MathSciNetMATH
35.
go back to reference M. Burger, M. Di Francesco, and M. Franek. Stationary states of quadratic diffusion equations with long-range attraction. Comm. Math. Sci., 11(3):709–738, 2013.MathSciNetMATH M. Burger, M. Di Francesco, and M. Franek. Stationary states of quadratic diffusion equations with long-range attraction. Comm. Math. Sci., 11(3):709–738, 2013.MathSciNetMATH
36.
go back to reference M. Burger, R. Fetecau, and Y. Huang. Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst., 13(1):397–424, 2014.MathSciNetMATH M. Burger, R. Fetecau, and Y. Huang. Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst., 13(1):397–424, 2014.MathSciNetMATH
37.
go back to reference J. A. Cañizo, J. A. Carrillo, and F. S. Patacchini. Existence of compactly supported global minimisers for the interaction energy. Arch. Ration. Mech. Anal., 217(3):1197–1217, 2015.MathSciNetMATH J. A. Cañizo, J. A. Carrillo, and F. S. Patacchini. Existence of compactly supported global minimisers for the interaction energy. Arch. Ration. Mech. Anal., 217(3):1197–1217, 2015.MathSciNetMATH
38.
go back to reference J. A. Cañizo, J. A. Carrillo, and M. E. Schonbek. Decay rates for a class of diffusive-dominated interaction equations. J. Math. Anal. Appl., 389(1):541–557, 2012.MathSciNetMATH J. A. Cañizo, J. A. Carrillo, and M. E. Schonbek. Decay rates for a class of diffusive-dominated interaction equations. J. Math. Anal. Appl., 389(1):541–557, 2012.MathSciNetMATH
39.
go back to reference L. A. Caffarelli and A. Friedman. Asymptotic behavior of solutions of ut = Δum as m →∞. Indiana U. Math. J., 36(4):711–728, 1987. L. A. Caffarelli and A. Friedman. Asymptotic behavior of solutions of ut = Δum as m →. Indiana U. Math. J., 36(4):711–728, 1987.
40.
go back to reference V. Calvez and J. A. Carrillo. Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl., 86(2):155–175, 2006.MathSciNetMATH V. Calvez and J. A. Carrillo. Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl., 86(2):155–175, 2006.MathSciNetMATH
41.
go back to reference V. Calvez, J. A. Carrillo, and F. Hoffmann. Equilibria of homogeneous functionals in the fair-competition regime. Nonlinear Anal., 159:85–128, 2017.MathSciNetMATH V. Calvez, J. A. Carrillo, and F. Hoffmann. Equilibria of homogeneous functionals in the fair-competition regime. Nonlinear Anal., 159:85–128, 2017.MathSciNetMATH
42.
go back to reference V. Calvez, J. A. Carrillo, and F. Hoffmann. The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime. 2186:1–71, 2017. V. Calvez, J. A. Carrillo, and F. Hoffmann. The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime. 2186:1–71, 2017.
43.
go back to reference V. Calvez and T. O. Gallouët. Particle approximation of the one dimensional Keller–Segel equation, stability and rigidity of the blow-up. Discrete Contin. Dyn. Syst. Ser. A, 36(3):1175–1208, 2015.MathSciNetMATH V. Calvez and T. O. Gallouët. Particle approximation of the one dimensional Keller–Segel equation, stability and rigidity of the blow-up. Discrete Contin. Dyn. Syst. Ser. A, 36(3):1175–1208, 2015.MathSciNetMATH
44.
go back to reference J. F. Campos and J. Dolbeault. Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. J. Math. Anal. Appl., 39(5):806–841, 2014.MathSciNetMATH J. F. Campos and J. Dolbeault. Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. J. Math. Anal. Appl., 39(5):806–841, 2014.MathSciNetMATH
45.
go back to reference M. Campos-Pinto, J. A. Carrillo, F. Charles, and Y.-P. Choi. Convergence of a linearly transformed particle method for aggregation equations. Numerische Mathematik, 139:743–793, 2018.MathSciNetMATH M. Campos-Pinto, J. A. Carrillo, F. Charles, and Y.-P. Choi. Convergence of a linearly transformed particle method for aggregation equations. Numerische Mathematik, 139:743–793, 2018.MathSciNetMATH
46.
go back to reference E. A. Carlen and K. Craig. Contraction of the proximal map and generalized convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric. Math. and Mech. of Complex Systems, 1(1):33–65, 2013.MATH E. A. Carlen and K. Craig. Contraction of the proximal map and generalized convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric. Math. and Mech. of Complex Systems, 1(1):33–65, 2013.MATH
47.
go back to reference E. A. Carlen and A. Figalli. Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation. Duke Math. J., 162(3):579–625, 2013.MathSciNetMATH E. A. Carlen and A. Figalli. Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation. Duke Math. J., 162(3):579–625, 2013.MathSciNetMATH
48.
go back to reference E. A. Carlen and M. Loss. Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn. Geom. Funct. Anal., 2(1):90–104, 1992.MathSciNetMATH E. A. Carlen and M. Loss. Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn. Geom. Funct. Anal., 2(1):90–104, 1992.MathSciNetMATH
49.
go back to reference G. Carlier, V. Duval, G. Peyré, and B. Schmitzer. Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.MathSciNetMATH G. Carlier, V. Duval, G. Peyré, and B. Schmitzer. Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.MathSciNetMATH
50.
go back to reference J. A. Carrillo, D. Castorina, and B. Volzone. Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction. SIAM J. Math. Anal., 47(1):1–25, Jan. 2015. J. A. Carrillo, D. Castorina, and B. Volzone. Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction. SIAM J. Math. Anal., 47(1):1–25, Jan. 2015.
51.
go back to reference J. A. Carrillo, A. Chertock, and Y. Huang. A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys., 17(1):233–258, 2015.MathSciNetMATH J. A. Carrillo, A. Chertock, and Y. Huang. A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys., 17(1):233–258, 2015.MathSciNetMATH
52.
go back to reference J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lect., pages 1–46. Springer, Vienna, 2014. J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lect., pages 1–46. Springer, Vienna, 2014.
53.
go back to reference J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, volume 553 of CISM Courses and Lect., pages 1–46. Springer Vienna, 2014. J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, volume 553 of CISM Courses and Lect., pages 1–46. Springer Vienna, 2014.
54.
go back to reference J. A. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem. Mean-field limit for collective behavior models with sharp sensitivity regions. J. Eur. Math. Soc., 21:121–161, 2019.MathSciNetMATH J. A. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem. Mean-field limit for collective behavior models with sharp sensitivity regions. J. Eur. Math. Soc., 21:121–161, 2019.MathSciNetMATH
55.
go back to reference J. A. Carrillo, K. Craig, and F. S. Patacchini. A blob method for diffusion. arXiv preprint arXiv:1709.09195, 2017. J. A. Carrillo, K. Craig, and F. S. Patacchini. A blob method for diffusion. arXiv preprint arXiv:1709.09195, 2017.
56.
go back to reference J. A. Carrillo, K. Craig, L. Wang, and C. Wei. Primal dual methods for Wasserstein gradient flows. arXiv preprint arXiv:1901.08081, 2019. J. A. Carrillo, K. Craig, L. Wang, and C. Wei. Primal dual methods for Wasserstein gradient flows. arXiv preprint arXiv:1901.08081, 2019.
57.
go back to reference J. A. Carrillo, M. G. Delgadino, and A. Mellet. Regularity of local minimizers of the interaction energy via obstacle problems. Comm. Math. Phys., 343(3):747–781, 2016.MathSciNetMATH J. A. Carrillo, M. G. Delgadino, and A. Mellet. Regularity of local minimizers of the interaction energy via obstacle problems. Comm. Math. Phys., 343(3):747–781, 2016.MathSciNetMATH
58.
go back to reference J. A. Carrillo, M. Delgadino, and F. S. Patacchini. Existence of ground states for aggregation-diffusion equations. Analysis and applications, 17:393–423, 2019.MathSciNetMATH J. A. Carrillo, M. Delgadino, and F. S. Patacchini. Existence of ground states for aggregation-diffusion equations. Analysis and applications, 17:393–423, 2019.MathSciNetMATH
59.
go back to reference J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetMATH J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetMATH
60.
go back to reference J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetMATH J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetMATH
61.
go back to reference J. A. Carrillo, A. Figalli, and F. S. Patacchini. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. IHP, 34:1299–1308, 2017.MathSciNetMATH J. A. Carrillo, A. Figalli, and F. S. Patacchini. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. IHP, 34:1299–1308, 2017.MathSciNetMATH
62.
go back to reference J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic models of swarming. Mathematical Modelling of Collective Behavior in Socio-Economic and Life Sciences, pages 297–336, 2010. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic models of swarming. Mathematical Modelling of Collective Behavior in Socio-Economic and Life Sciences, pages 297–336, 2010.
63.
go back to reference J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. arXiv preprint arXiv:1603.07767, 2016, to appear in Inventiones Mathematicae. J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. arXiv preprint arXiv:1603.07767, 2016, to appear in Inventiones Mathematicae.
64.
go back to reference J. A. Carrillo, F. Hoffmann, E. Mainini, and B. Volzone. Ground states in the diffusion-dominated regime. Calc. Var. Partial Differ. Equ., 57(5):127, 2018. J. A. Carrillo, F. Hoffmann, E. Mainini, and B. Volzone. Ground states in the diffusion-dominated regime. Calc. Var. Partial Differ. Equ., 57(5):127, 2018.
65.
go back to reference J. A. Carrillo, Y. Huang, F. S. Patacchini, and G. Wolansky. Numerical study of a particle method for gradient flows. Kinet. Relat. Models, 10(3):613–641, 2017.MathSciNetMATH J. A. Carrillo, Y. Huang, F. S. Patacchini, and G. Wolansky. Numerical study of a particle method for gradient flows. Kinet. Relat. Models, 10(3):613–641, 2017.MathSciNetMATH
66.
go back to reference J. A. Carrillo, R. J. McCann, and C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam., 19(3):971–1018, 2003.MathSciNetMATH J. A. Carrillo, R. J. McCann, and C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam., 19(3):971–1018, 2003.MathSciNetMATH
67.
go back to reference J. A. Carrillo and J. S. Moll. Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput., 31(6):4305–4329, 2009/10. J. A. Carrillo and J. S. Moll. Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput., 31(6):4305–4329, 2009/10.
68.
go back to reference J. A. Carrillo, F. S. Patacchini, P. Sternberg, and G. Wolansky. Convergence of a particle method for diffusive gradient flows in one dimension. SIAM J. Math. Anal., 48(6):3708–3741, 2016.MathSciNetMATH J. A. Carrillo, F. S. Patacchini, P. Sternberg, and G. Wolansky. Convergence of a particle method for diffusive gradient flows in one dimension. SIAM J. Math. Anal., 48(6):3708–3741, 2016.MathSciNetMATH
69.
go back to reference J. A. Carrillo, H. Ranetbauer, and M.-T. Wolfram. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys., 327:186–202, 2016.MathSciNetMATH J. A. Carrillo, H. Ranetbauer, and M.-T. Wolfram. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys., 327:186–202, 2016.MathSciNetMATH
70.
go back to reference J. A. Carrillo and J. Wang. Uniform in time L∞-estimates for nonlinear aggregation-diffusion equations. arXiv preprint arXiv:1712.09541, 2017. J. A. Carrillo and J. Wang. Uniform in time L-estimates for nonlinear aggregation-diffusion equations. arXiv preprint arXiv:1712.09541, 2017.
71.
go back to reference L. Chen, J.-G. Liu, and J. Wang. Multidimensional degenerate Keller–Segel system with critical diffusion exponent 2n/(n+2). SIAM J. Math. Anal., 44(2):1077–1102, 2012.MathSciNetMATH L. Chen, J.-G. Liu, and J. Wang. Multidimensional degenerate Keller–Segel system with critical diffusion exponent 2n/(n+2). SIAM J. Math. Anal., 44(2):1077–1102, 2012.MathSciNetMATH
72.
go back to reference L. Chen and J. Wang. Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math., 19:103–120, 2014.MathSciNetMATH L. Chen and J. Wang. Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math., 19:103–120, 2014.MathSciNetMATH
74.
go back to reference R. Choksi, C. B. Muratov, and I. Topaloglu. An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notices Amer. Math. Soc., 64(11):1275–1283, 2017.MathSciNetMATH R. Choksi, C. B. Muratov, and I. Topaloglu. An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notices Amer. Math. Soc., 64(11):1275–1283, 2017.MathSciNetMATH
75.
go back to reference G.-H. Cottet and P.-A. Raviart. Particle methods for the one-dimensional Vlasov–Poisson equations. SIAM J. Numer. Anal., 21(1):52–76, 1984.MathSciNetMATH G.-H. Cottet and P.-A. Raviart. Particle methods for the one-dimensional Vlasov–Poisson equations. SIAM J. Numer. Anal., 21(1):52–76, 1984.MathSciNetMATH
76.
go back to reference E. Cozzi, G.-M. Gie, and J. P. Kelliher. The aggregation equation with Newtonian potential: the vanishing viscosity limit. J. Math. Anal. Appl., 453(2):841–893, 2017.MathSciNetMATH E. Cozzi, G.-M. Gie, and J. P. Kelliher. The aggregation equation with Newtonian potential: the vanishing viscosity limit. J. Math. Anal. Appl., 453(2):841–893, 2017.MathSciNetMATH
78.
go back to reference K. Craig. Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions. Proc. Lond. Math. Soc., 114(1):60–102, 2017.MathSciNetMATH K. Craig. Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions. Proc. Lond. Math. Soc., 114(1):60–102, 2017.MathSciNetMATH
79.
go back to reference K. Craig and A. L. Bertozzi. A blob method for the aggregation equation. Math. Comp., 85(300):1681–1717, 2016.MathSciNetMATH K. Craig and A. L. Bertozzi. A blob method for the aggregation equation. Math. Comp., 85(300):1681–1717, 2016.MathSciNetMATH
80.
go back to reference K. Craig, I. Kim, and Y. Yao. Congested aggregation via Newtonian interaction. Arch. Rational Mech. Anal., 227(1):1–67, 2018.MathSciNetMATH K. Craig, I. Kim, and Y. Yao. Congested aggregation via Newtonian interaction. Arch. Rational Mech. Anal., 227(1):1–67, 2018.MathSciNetMATH
81.
go back to reference K. Craig and I. Topaloglu. Convergence of regularized nonlocal interaction energies. SIAM J. Math. Anal., 48(1):34–60, 2016.MathSciNetMATH K. Craig and I. Topaloglu. Convergence of regularized nonlocal interaction energies. SIAM J. Math. Anal., 48(1):34–60, 2016.MathSciNetMATH
82.
go back to reference K. Craig and I. Topaloglu. Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit. arXiv preprint arXiv:1806.07415, 2018. K. Craig and I. Topaloglu. Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit. arXiv preprint arXiv:1806.07415, 2018.
83.
go back to reference F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852–862, 2007.MathSciNetMATH F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852–862, 2007.MathSciNetMATH
84.
go back to reference P. Degond and F.-J. Mustieles. A deterministic approximation of diffusion equations using particles. SIAM J. Sci. Statist. Comput., 11(2):293–310, 1990.MathSciNetMATH P. Degond and F.-J. Mustieles. A deterministic approximation of diffusion equations using particles. SIAM J. Sci. Statist. Comput., 11(2):293–310, 1990.MathSciNetMATH
85.
go back to reference M. Di Francesco and Y. Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. arXiv preprint arXiv:1710.08213, 2017. M. Di Francesco and Y. Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. arXiv preprint arXiv:1710.08213, 2017.
86.
go back to reference J. Dolbeault and B. Perthame. Optimal critical mass in the two-dimensional Keller–Segel model in ℝ2. C. R. Math. Acad. Sci. Paris, 339(9):611–616, 2004.MathSciNetMATH J. Dolbeault and B. Perthame. Optimal critical mass in the two-dimensional Keller–Segel model in ℝ2. C. R. Math. Acad. Sci. Paris, 339(9):611–616, 2004.MathSciNetMATH
87.
go back to reference M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006. M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006.
88.
go back to reference L. Evans, O. Savin, and W. Gangbo. Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal., 37(3):737–751, 2005.MathSciNetMATH L. Evans, O. Savin, and W. Gangbo. Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal., 37(3):737–751, 2005.MathSciNetMATH
89.
go back to reference J. H. Evers and T. Kolokolnikov. Metastable states for an aggregation model with noise. SIAM J. Appl. Dyn. Syst., 15(4):2213–2226, 2016.MathSciNetMATH J. H. Evers and T. Kolokolnikov. Metastable states for an aggregation model with noise. SIAM J. Appl. Dyn. Syst., 15(4):2213–2226, 2016.MathSciNetMATH
90.
go back to reference G. E. Fernández and S. Mischler. Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case. Arch. Ration. Mech. Anal., 220(3):1159–1194, 2016.MathSciNetMATH G. E. Fernández and S. Mischler. Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case. Arch. Ration. Mech. Anal., 220(3):1159–1194, 2016.MathSciNetMATH
91.
go back to reference R. L. Frank and E. H. Lieb. A ‘liquid-solid’ phase transition in a simple model for swarming, based on the ‘no flat-spots’ theorem for subharmonic functions. Indiana Univ. Math. J., 2018. to appear. R. L. Frank and E. H. Lieb. A ‘liquid-solid’ phase transition in a simple model for swarming, based on the ‘no flat-spots’ theorem for subharmonic functions. Indiana Univ. Math. J., 2018. to appear.
92.
go back to reference T.-E. Ghoul and N. Masmoudi. Stability of infinite time blow up for the Patlak Keller Segel system. preprint arXiv:1610.00456, 2016. T.-E. Ghoul and N. Masmoudi. Stability of infinite time blow up for the Patlak Keller Segel system. preprint arXiv:1610.00456, 2016.
93.
go back to reference O. Gil and F. Quirós. Convergence of the porous media equation to Hele–Shaw. Nonlinear Anal Theory Methods Appl., 44(8):1111–1131, 2001.MathSciNetMATH O. Gil and F. Quirós. Convergence of the porous media equation to Hele–Shaw. Nonlinear Anal Theory Methods Appl., 44(8):1111–1131, 2001.MathSciNetMATH
94.
go back to reference O. Gil and F. Quirós. Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(1):13–36, 2003.MathSciNetMATH O. Gil and F. Quirós. Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(1):13–36, 2003.MathSciNetMATH
95.
go back to reference J. Goodman, T. Y. Hou, and J. Lowengrub. Convergence of the point vortex method for the 2-D Euler equations. Comm. Pure Appl. Math., 43(3):415–430, 1990.MathSciNetMATH J. Goodman, T. Y. Hou, and J. Lowengrub. Convergence of the point vortex method for the 2-D Euler equations. Comm. Pure Appl. Math., 43(3):415–430, 1990.MathSciNetMATH
96.
go back to reference L. Gosse and G. Toscani. Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput., 28(4):1203–1227, 2006.MathSciNetMATH L. Gosse and G. Toscani. Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput., 28(4):1203–1227, 2006.MathSciNetMATH
97.
go back to reference M. A. Herrero and J. J. Velázquez. Singularity patterns in a chemotaxis model. Mathematische Annalen, 306(1):583–623, 1996.MathSciNetMATH M. A. Herrero and J. J. Velázquez. Singularity patterns in a chemotaxis model. Mathematische Annalen, 306(1):583–623, 1996.MathSciNetMATH
98.
go back to reference D. Horstmann. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math.-Verein., 105(3):103–165, 2003.MathSciNetMATH D. Horstmann. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math.-Verein., 105(3):103–165, 2003.MathSciNetMATH
99.
go back to reference H. Huang and J.-G. Liu. Error estimate of a random particle blob method for the Keller–Segel equation. Math. Comp., 86(308):2719–2744. H. Huang and J.-G. Liu. Error estimate of a random particle blob method for the Keller–Segel equation. Math. Comp., 86(308):2719–2744.
100.
go back to reference J. D. Hunter. Matplotlib: a 2d graphics environment. Comput. Sci. Eng., 9(3):90–95, 2007. J. D. Hunter. Matplotlib: a 2d graphics environment. Comput. Sci. Eng., 9(3):90–95, 2007.
101.
go back to reference P.-E. Jabin. A review of the mean field limits for Vlasov equations. Kinet. Relat. Models, 7(4):661–711, 2014.MathSciNetMATH P.-E. Jabin. A review of the mean field limits for Vlasov equations. Kinet. Relat. Models, 7(4):661–711, 2014.MathSciNetMATH
102.
go back to reference P.-E. Jabin and Z. Wang. Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal., 271(12):3588–3627, 2016.MathSciNetMATH P.-E. Jabin and Z. Wang. Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal., 271(12):3588–3627, 2016.MathSciNetMATH
103.
go back to reference P.-E. Jabin and Z. Wang. Mean field limit for stochastic particle systems. In Active Particles. Vol. 1. Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., pages 379–402. Birkhäuser/Springer, Cham, 2017. P.-E. Jabin and Z. Wang. Mean field limit for stochastic particle systems. In Active Particles. Vol. 1. Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., pages 379–402. Birkhäuser/Springer, Cham, 2017.
104.
go back to reference W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992.MathSciNetMATH W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992.MathSciNetMATH
106.
go back to reference R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.MathSciNetMATH R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.MathSciNetMATH
107.
go back to reference G. Kaib. Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential. SIAM J. Math. Anal., 49(1):272–296, 2017.MathSciNetMATH G. Kaib. Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential. SIAM J. Math. Anal., 49(1):272–296, 2017.MathSciNetMATH
108.
go back to reference E. F. Keller and L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30(2):225–234, 1971.MATH E. F. Keller and L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30(2):225–234, 1971.MATH
109.
go back to reference I. Kim and N. Požár. Porous medium equation to Hele–Shaw flow with general initial density. Trans. Amer. Math. Soc., 370(2):873–909, 2018.MathSciNetMATH I. Kim and N. Požár. Porous medium equation to Hele–Shaw flow with general initial density. Trans. Amer. Math. Soc., 370(2):873–909, 2018.MathSciNetMATH
110.
go back to reference I. Kim, N. Požár, and B. Woodhouse. Singular limit of the porous medium equation with a drift. arXiv preprint arXiv:1708.05842, 2017. I. Kim, N. Požár, and B. Woodhouse. Singular limit of the porous medium equation with a drift. arXiv preprint arXiv:1708.05842, 2017.
111.
go back to reference I. Kim and Y. Yao. The Patlak-Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal., 44(2):568–602, 2012.MathSciNetMATH I. Kim and Y. Yao. The Patlak-Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal., 44(2):568–602, 2012.MathSciNetMATH
112.
go back to reference T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, and M. Lewis. Emergent behaviour in multi-particle systems with non-local interactions [Editorial]. Phys. D, 260:1–4, 2013.MathSciNet T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, and M. Lewis. Emergent behaviour in multi-particle systems with non-local interactions [Editorial]. Phys. D, 260:1–4, 2013.MathSciNet
113.
go back to reference G. Lacombe and S. Mas-Gallic. Presentation and analysis of a diffusion-velocity method. In Flows and Related Numerical Methods (Toulouse, 1998), volume 7 of ESAIM Proc., pages 225–233. Soc. Math. Appl. Indust., Paris, 1999. G. Lacombe and S. Mas-Gallic. Presentation and analysis of a diffusion-velocity method. In Flows and Related Numerical Methods (Toulouse, 1998), volume 7 of ESAIM Proc., pages 225–233. Soc. Math. Appl. Indust., Paris, 1999.
114.
go back to reference E. H. Lieb and H.-T. Yau. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phy., 112(1):147–174, 1987.MathSciNetMATH E. H. Lieb and H.-T. Yau. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phy., 112(1):147–174, 1987.MathSciNetMATH
115.
go back to reference P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2):109–145, 1984. P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2):109–145, 1984.
116.
go back to reference P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):223–283, 1984. P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):223–283, 1984.
117.
go back to reference P.-L. Lions and S. Mas-Gallic. Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris Sér. I Math., 332(4):369–376, 2001.MathSciNetMATH P.-L. Lions and S. Mas-Gallic. Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris Sér. I Math., 332(4):369–376, 2001.MathSciNetMATH
118.
go back to reference J.-G. Liu, L. Wang, and Z. Zhou. Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Mathematics of Computation, 87:1165–1189, 2018.MathSciNetMATH J.-G. Liu, L. Wang, and Z. Zhou. Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Mathematics of Computation, 87:1165–1189, 2018.MathSciNetMATH
119.
go back to reference J.-G. Liu and R. Yang. A random particle blob method for the Keller–Segel equation and convergence analysis. Math. Comp., 86(304):725–745, 2017.MathSciNetMATH J.-G. Liu and R. Yang. A random particle blob method for the Keller–Segel equation and convergence analysis. Math. Comp., 86(304):725–745, 2017.MathSciNetMATH
120.
go back to reference S. Mas-Gallic. The diffusion velocity method: a deterministic way of moving the nodes for solving diffusion equations. Transp. Theory and Stat. Phys., 31(4-6):595–605, 2002.MathSciNetMATH S. Mas-Gallic. The diffusion velocity method: a deterministic way of moving the nodes for solving diffusion equations. Transp. Theory and Stat. Phys., 31(4-6):595–605, 2002.MathSciNetMATH
121.
go back to reference B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., 20(10):1787–1821, 2010.MathSciNetMATH B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., 20(10):1787–1821, 2010.MathSciNetMATH
122.
go back to reference B. Maury, A. Roudneff-Chupin, F. Santambrogio, and J. Venel. Handling congestion in crowd motion modeling. Netw. Heterog. Media., 6(3):485–519, 2011.MathSciNetMATH B. Maury, A. Roudneff-Chupin, F. Santambrogio, and J. Venel. Handling congestion in crowd motion modeling. Netw. Heterog. Media., 6(3):485–519, 2011.MathSciNetMATH
123.
go back to reference A. Mellet, B. Perthame, and F. Quiros. A Hele–Shaw problem for tumor growth. J. Func. Anal., 273(10):3061–3093, 2017.MathSciNetMATH A. Mellet, B. Perthame, and F. Quiros. A Hele–Shaw problem for tumor growth. J. Func. Anal., 273(10):3061–3093, 2017.MathSciNetMATH
124.
go back to reference S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev., 56(4):577–621, 2014.MathSciNetMATH S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev., 56(4):577–621, 2014.MathSciNetMATH
125.
go back to reference K. Oelschläger. Large systems of interacting particles and the porous medium equation. J. Diff. Eq., 88(2):294–346, 1990.MathSciNetMATH K. Oelschläger. Large systems of interacting particles and the porous medium equation. J. Diff. Eq., 88(2):294–346, 1990.MathSciNetMATH
126.
go back to reference F. Otto. Doubly degenerate diffusion equations as steepest descent, manuscript. 1996. F. Otto. Doubly degenerate diffusion equations as steepest descent, manuscript. 1996.
127.
go back to reference N. Papadakis, G. Peyre, and E. Oudet. Optimal transport with proximal splitting. SIAM. J. Image. Sci., 7(1):212–238, 2014.MathSciNetMATH N. Papadakis, G. Peyre, and E. Oudet. Optimal transport with proximal splitting. SIAM. J. Image. Sci., 7(1):212–238, 2014.MathSciNetMATH
128.
go back to reference C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15(3):311–338, 1953.MathSciNetMATH C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15(3):311–338, 1953.MathSciNetMATH
129.
go back to reference B. Perthame, F. Quirós, M. Tang, and N. Vauchelet. Derivation of a Hele–Shaw type system from a cell model with active motion. Interfaces Free Bound., 16(4):489–508, 2014.MathSciNetMATH B. Perthame, F. Quirós, M. Tang, and N. Vauchelet. Derivation of a Hele–Shaw type system from a cell model with active motion. Interfaces Free Bound., 16(4):489–508, 2014.MathSciNetMATH
130.
go back to reference B. Perthame, F. Quirós, and J. L. Vázquez. The Hele–Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal., 212(1):93–127, 2014.MathSciNetMATH B. Perthame, F. Quirós, and J. L. Vázquez. The Hele–Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal., 212(1):93–127, 2014.MathSciNetMATH
131.
go back to reference P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. Math. Ann., 359(1-2):267–377, 2014.MathSciNetMATH P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. Math. Ann., 359(1-2):267–377, 2014.MathSciNetMATH
132.
133.
go back to reference G. Russo. A particle method for collisional kinetic equations. I. basic theory and one-dimensional results. J. Comput. Phys., 87(2):270–300, 1990. G. Russo. A particle method for collisional kinetic equations. I. basic theory and one-dimensional results. J. Comput. Phys., 87(2):270–300, 1990.
134.
go back to reference T. Senba. Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains. Nonlinear Anal. Theory Methods Appl., 66(8):1817–1839, 2007.MathSciNetMATH T. Senba. Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains. Nonlinear Anal. Theory Methods Appl., 66(8):1817–1839, 2007.MathSciNetMATH
135.
go back to reference T. Senba and T. Suzuki. Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal., 191(1):17–51, 2002.MathSciNetMATH T. Senba and T. Suzuki. Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal., 191(1):17–51, 2002.MathSciNetMATH
136.
go back to reference S. Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst., 31(4):1427–1451, 2011.MathSciNetMATH S. Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst., 31(4):1427–1451, 2011.MathSciNetMATH
137.
go back to reference Y. Sugiyama. The global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differential and Integral Equations, 20(2):133–180, 2007.MathSciNetMATH Y. Sugiyama. The global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differential and Integral Equations, 20(2):133–180, 2007.MathSciNetMATH
138.
go back to reference Z. Sun, J. A. Carrillo, and C.-W. Shu. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, preprint. Preprint, 2017. Z. Sun, J. A. Carrillo, and C.-W. Shu. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, preprint. Preprint, 2017.
139.
go back to reference C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006.MathSciNetMATH C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006.MathSciNetMATH
140.
go back to reference S. van der Walt, C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30, 2011. S. van der Walt, C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30, 2011.
141.
go back to reference J. L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory. J. L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory.
142.
go back to reference C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.
143.
go back to reference M. Westdickenberg and J. Wilkening. Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. M2AN Math. Model. Numer. Anal., 44(1):133–166, 2010.MathSciNetMATH M. Westdickenberg and J. Wilkening. Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. M2AN Math. Model. Numer. Anal., 44(1):133–166, 2010.MathSciNetMATH
144.
go back to reference Y. Yao. Asymptotic behavior of radial solutions for critical Patlak-Keller-Segel model and an repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 31:81–101, 2014.MathSciNetMATH Y. Yao. Asymptotic behavior of radial solutions for critical Patlak-Keller-Segel model and an repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 31:81–101, 2014.MathSciNetMATH
145.
go back to reference Y. Yao and A. L. Bertozzi. Blow-up dynamics for the aggregation equation with degenerate diffusion. Phys. D, 260:77–89, 2013.MathSciNetMATH Y. Yao and A. L. Bertozzi. Blow-up dynamics for the aggregation equation with degenerate diffusion. Phys. D, 260:77–89, 2013.MathSciNetMATH
146.
go back to reference Y. Zhang. On a class of diffusion-aggregation equations. arXiv preprint arXiv:1801.05543, 2018. Y. Zhang. On a class of diffusion-aggregation equations. arXiv preprint arXiv:1801.05543, 2018.
Metadata
Title
Aggregation-Diffusion Equations: Dynamics, Asymptotics, and Singular Limits
Authors
José A. Carrillo
Katy Craig
Yao Yao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20297-2_3

Premium Partners