Skip to main content
Top

2019 | OriginalPaper | Chapter

Kinetic Models for Pattern Formation in Animal Aggregations: A Symmetry and Bifurcation Approach

Authors : Pietro-Luciano Buono, Raluca Eftimie, Mitchell Kovacic, Lennaert van Veen

Published in: Active Particles, Volume 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study we start by reviewing a class of 1D hyperbolic/kinetic models (with two velocities) used to investigate the collective behaviour of cells, bacteria or animals. We then focus on a restricted class of nonlocal models that incorporate various inter-individual communication mechanisms, and discuss how the symmetries of these models impact the various types of spatially heterogeneous and spatially homogeneous equilibria exhibited by these nonlocal models. In particular, we characterise a new type of equilibria that was not discussed before for this class of models, namely a relative equilibria. Then we simulate numerically these models and show a variety of spatio-temporal patterns (including classic equilibria and relative equilibria) exhibited by these models. We conclude by introducing a continuation algorithm (which takes into account the models symmetries) that allows us to track the solutions bifurcating from these different equilibria. Finally, we apply this algorithm to identify a D3-symmetric steady-state solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods. SIAM, 2003.MATH E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods. SIAM, 2003.MATH
2.
go back to reference I. Aoki. A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish, pages 1081–1088, 1982. I. Aoki. A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish, pages 1081–1088, 1982.
3.
go back to reference S. Arganda, A. Pérez-Escudero, and G.G. de Polavieja. A common rule for decision making in animal collectives across species. Proc. Matl. Acad. Sci., 109:20508–20513, 2012. S. Arganda, A. Pérez-Escudero, and G.G. de Polavieja. A common rule for decision making in animal collectives across species. Proc. Matl. Acad. Sci., 109:20508–20513, 2012.
4.
go back to reference P. Ashwin and I. Melbourne. Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity, 10:595, 1997.MathSciNetMATH P. Ashwin and I. Melbourne. Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity, 10:595, 1997.MathSciNetMATH
5.
go back to reference P. J. Aston, A. Spence, and W. Wu. Bifurcation to rotating waves in equations with O(2)–symmetry. SIAM J. Appl. Math., 52:792–809, 1992.MathSciNetMATH P. J. Aston, A. Spence, and W. Wu. Bifurcation to rotating waves in equations with O(2)–symmetry. SIAM J. Appl. Math., 52:792–809, 1992.MathSciNetMATH
6.
go back to reference D. Avitable and K.C.A. Wedgwood. Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis. J. Math. Biol., 75(4):885–928, 2017.MathSciNetMATH D. Avitable and K.C.A. Wedgwood. Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis. J. Math. Biol., 75(4):885–928, 2017.MathSciNetMATH
7.
go back to reference E. Barbera, G. Consolo, and G. Valenti. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Math. Biosci. Eng., 12(3):451–472, 2015.MathSciNetMATH E. Barbera, G. Consolo, and G. Valenti. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Math. Biosci. Eng., 12(3):451–472, 2015.MathSciNetMATH
8.
go back to reference E. Barbera, C. Currò, and G. Valenti. Wave features of a hyperbolic prey-predator model. Math. Methods Appl. Sci., 33(12):1504–1515, 2010.MathSciNetMATH E. Barbera, C. Currò, and G. Valenti. Wave features of a hyperbolic prey-predator model. Math. Methods Appl. Sci., 33(12):1504–1515, 2010.MathSciNetMATH
9.
go back to reference N. Bellomo, A. Bellouquid, and M. Delitala. From the mathematical kinetic theory of active particles to multiscale modelling of complex biological systems. Math. Comput. Model., 47(7-8):687–698, 2008.MathSciNetMATH N. Bellomo, A. Bellouquid, and M. Delitala. From the mathematical kinetic theory of active particles to multiscale modelling of complex biological systems. Math. Comput. Model., 47(7-8):687–698, 2008.MathSciNetMATH
10.
go back to reference A. Berdhal, C.J. Torney, C.C. Ioannou, J.J. Faria, and I.D. Couzin. Emergent sensing of complex environments by mobile animal groups. Science, 339(6119):574–576, 2013. A. Berdhal, C.J. Torney, C.C. Ioannou, J.J. Faria, and I.D. Couzin. Emergent sensing of complex environments by mobile animal groups. Science, 339(6119):574–576, 2013.
11.
go back to reference P-L. Buono and R. Eftimie. Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations. Math. Models Methods Appl. Sci., 24(2):327–357, 2014.MathSciNetMATH P-L. Buono and R. Eftimie. Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations. Math. Models Methods Appl. Sci., 24(2):327–357, 2014.MathSciNetMATH
12.
go back to reference P-L. Buono and R. Eftimie. Codimension-two bifurcations in animal aggregation models with symmetry. SIAM J. Appl. Dyn. Syst., 13(4):1542–1582, 2014.MathSciNetMATH P-L. Buono and R. Eftimie. Codimension-two bifurcations in animal aggregation models with symmetry. SIAM J. Appl. Dyn. Syst., 13(4):1542–1582, 2014.MathSciNetMATH
13.
go back to reference P.-L. Buono and R. Eftimie. Lyapunov-Schmidt and centre-manifold reduction methods for nonlocal PDEs modelling animal aggregations. In B. Tony, editor, Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, volume 157, pages 29–59. Springer, Cham, 2016. P.-L. Buono and R. Eftimie. Lyapunov-Schmidt and centre-manifold reduction methods for nonlocal PDEs modelling animal aggregations. In B. Tony, editor, Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, volume 157, pages 29–59. Springer, Cham, 2016.
14.
go back to reference D. Burini, L. Gibelli, and N. Outada. A kinetic theory approach to the modeling of complex living systems. In N. Bellomo, P. Degond, and E. Tadmor, editors, Active Particles, volume 1, pages 229–258. Birkhäuser, Basel, 2017. D. Burini, L. Gibelli, and N. Outada. A kinetic theory approach to the modeling of complex living systems. In N. Bellomo, P. Degond, and E. Tadmor, editors, Active Particles, volume 1, pages 229–258. Birkhäuser, Basel, 2017.
15.
go back to reference D.S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz. Swarming, schooling, milling: phase diagram of data-driven fish school model. New Journal of Physics, 16:015026, 2014. D.S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz. Swarming, schooling, milling: phase diagram of data-driven fish school model. New Journal of Physics, 16:015026, 2014.
16.
go back to reference H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud. Modeling collective motion: variations on the Vicsek model. The European Physics Journal B, 64(3-4):451–456, 2008. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud. Modeling collective motion: variations on the Vicsek model. The European Physics Journal B, 64(3-4):451–456, 2008.
17.
go back to reference S.-H. Choi and Y.-J. Kim. A discrete velocity kinetic model with food metric: chemotaxis travelling waves. Bull. Math. Biol., 79(2):277–302, 2017.MathSciNetMATH S.-H. Choi and Y.-J. Kim. A discrete velocity kinetic model with food metric: chemotaxis travelling waves. Bull. Math. Biol., 79(2):277–302, 2017.MathSciNetMATH
18.
go back to reference R.M. Colombo and E. Rossi. Hyperbolic predators vs. parabolic prey. Communications in Mathematical Sciences, 13(2):369–400, 2015. R.M. Colombo and E. Rossi. Hyperbolic predators vs. parabolic prey. Communications in Mathematical Sciences, 13(2):369–400, 2015.
19.
go back to reference I.D. Couzin, J. Krause, R. James, G.D. Ruxton, and N.R. Franks. Collective memory and spatial sorting in animal groups. J. Theor. Biol., 218:1–11, 2002.MathSciNet I.D. Couzin, J. Krause, R. James, G.D. Ruxton, and N.R. Franks. Collective memory and spatial sorting in animal groups. J. Theor. Biol., 218:1–11, 2002.MathSciNet
20.
go back to reference P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. Quaternions in collective dynamics. Multiscale Model. Simul., 16(1):28–77, 2018.MathSciNetMATH P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. Quaternions in collective dynamics. Multiscale Model. Simul., 16(1):28–77, 2018.MathSciNetMATH
21.
go back to reference R. Eftimie. Hyperbolic and kinetic models for self-organised biological aggregations and movement: a brief review. J. Math. Biol., 65(1):35–75, 2012.MathSciNetMATH R. Eftimie. Hyperbolic and kinetic models for self-organised biological aggregations and movement: a brief review. J. Math. Biol., 65(1):35–75, 2012.MathSciNetMATH
22.
go back to reference R. Eftimie. Simultaneous use of different communication mechanisms leads to spatial sorting and unexpected collective behaviours in animal groups. J. Theor. Biol., 337:42–53, 2013.MathSciNetMATH R. Eftimie. Simultaneous use of different communication mechanisms leads to spatial sorting and unexpected collective behaviours in animal groups. J. Theor. Biol., 337:42–53, 2013.MathSciNetMATH
23.
go back to reference R. Eftimie, G. de Vries, and M.A. Lewis. Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci., 104(17):6974–6979, 2007.MathSciNetMATH R. Eftimie, G. de Vries, and M.A. Lewis. Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci., 104(17):6974–6979, 2007.MathSciNetMATH
24.
go back to reference R. Eftimie, G. de Vries, M.A. Lewis, and F. Lutscher. Modeling group formation and activity patterns in self-organising collectives of individuals. Bull. Math. Biol., 69(5):1537–1566, 2007.MathSciNetMATH R. Eftimie, G. de Vries, M.A. Lewis, and F. Lutscher. Modeling group formation and activity patterns in self-organising collectives of individuals. Bull. Math. Biol., 69(5):1537–1566, 2007.MathSciNetMATH
25.
go back to reference R. Fetecau. Collective behaviour of biological aggregations in two dimensions: a nonlocal kinetic model. Math. Models Methods Appl. Sci., 21:1539–1569, 2011.MathSciNetMATH R. Fetecau. Collective behaviour of biological aggregations in two dimensions: a nonlocal kinetic model. Math. Models Methods Appl. Sci., 21:1539–1569, 2011.MathSciNetMATH
26.
go back to reference B. Fiedler, S. Björn, A. Scheel, and C. Wulff. Bifurcation form relative equilibria of nonimpact group actions: Skew products, meanders, and drifts. Documenta Mathematica, 1:479–505, 1996.MathSciNetMATH B. Fiedler, S. Björn, A. Scheel, and C. Wulff. Bifurcation form relative equilibria of nonimpact group actions: Skew products, meanders, and drifts. Documenta Mathematica, 1:479–505, 1996.MathSciNetMATH
27.
go back to reference F. Filbet, P. Laurencot, and B. Perthame. Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol., 50(2):189–207, 2005.MathSciNetMATH F. Filbet, P. Laurencot, and B. Perthame. Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol., 50(2):189–207, 2005.MathSciNetMATH
28.
go back to reference A. Filella, F. Nadal, C. Sire, E. Kanso, and C. Eloy. Model of collective fish behavior with hydrodynamic interactions. Phys. Rev. Lett., 120:198101, 2018. A. Filella, F. Nadal, C. Sire, E. Kanso, and C. Eloy. Model of collective fish behavior with hydrodynamic interactions. Phys. Rev. Lett., 120:198101, 2018.
29.
go back to reference M. Golubitsky, I. Stewart, and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory. Volume 2. Springer-Verlag New York Inc., 1988. M. Golubitsky, I. Stewart, and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory. Volume 2. Springer-Verlag New York Inc., 1988.
30.
go back to reference K.P. Hadeler. Reaction transport equations in biological modeling. Mathematical and Computer Modelling, 31(4-5):75–81, 2000. Proceedings of the Conference on Dynamical Systems in Biology and Medicine. K.P. Hadeler. Reaction transport equations in biological modeling. Mathematical and Computer Modelling, 31(4-5):75–81, 2000. Proceedings of the Conference on Dynamical Systems in Biology and Medicine.
31.
go back to reference M. Haragus and G. Iooss. Local bifurcations, centre manifolds, and normal forms in infinite-dimensional systems. Springer, 2010.MATH M. Haragus and G. Iooss. Local bifurcations, centre manifolds, and normal forms in infinite-dimensional systems. Springer, 2010.MATH
32.
go back to reference T. Hillen. Invariance principles for hyperbolic random walk systems. J. Math. Anal. Appl., 210(1):360–374, 1997.MathSciNetMATH T. Hillen. Invariance principles for hyperbolic random walk systems. J. Math. Anal. Appl., 210(1):360–374, 1997.MathSciNetMATH
33.
go back to reference T. Hillen. Hyperbolic models for chemosensitive movement. Mathematical Models and Methods in Applied Sciences, 12(07):1007–1034, 2002.MathSciNetMATH T. Hillen. Hyperbolic models for chemosensitive movement. Mathematical Models and Methods in Applied Sciences, 12(07):1007–1034, 2002.MathSciNetMATH
34.
go back to reference T. Hillen. Existence theory for correlated random walks on bounded domains. Canad. Appl. Math. Quart, 18(1):1–40, 2010.MathSciNetMATH T. Hillen. Existence theory for correlated random walks on bounded domains. Canad. Appl. Math. Quart, 18(1):1–40, 2010.MathSciNetMATH
35.
go back to reference T. Hillen and K.P. Hadeler. Hyperbolic systems and transport equations in mathematical biology. In Gerald Warnecke, editor, Analysis and Numerics for Conservation Laws, pages 257–279. Springer Berlin Heidelberg, 2005. T. Hillen and K.P. Hadeler. Hyperbolic systems and transport equations in mathematical biology. In Gerald Warnecke, editor, Analysis and Numerics for Conservation Laws, pages 257–279. Springer Berlin Heidelberg, 2005.
36.
go back to reference A. Huth and C. Wissel. The simulation of fish schools in comparison with experimental data. Ecol. Model, 75/76:135–145, 1994. A. Huth and C. Wissel. The simulation of fish schools in comparison with experimental data. Ecol. Model, 75/76:135–145, 1994.
37.
go back to reference H. Inaba. Threshold and stability results for an age-structured epidemic model. J. Math. Biol., 28:411–434, 1990.MathSciNetMATH H. Inaba. Threshold and stability results for an age-structured epidemic model. J. Math. Biol., 28:411–434, 1990.MathSciNetMATH
38.
go back to reference B.L. Keyfitz and N. Keyfitz. The McKendrick partial differential equation and its uses in epidemiology and population study. Math. Comput. Modelling, 26(6):1–9, 1997.MathSciNetMATH B.L. Keyfitz and N. Keyfitz. The McKendrick partial differential equation and its uses in epidemiology and population study. Math. Comput. Modelling, 26(6):1–9, 1997.MathSciNetMATH
39.
go back to reference I. Kmit. Fredholm solvability of a periodic Neumann problem for a linear telegraph equation. Ukrainian Mathematical Journal, 65(3), 2013. I. Kmit. Fredholm solvability of a periodic Neumann problem for a linear telegraph equation. Ukrainian Mathematical Journal, 65(3), 2013.
40.
go back to reference I. Kmit and L. Recke. Hopf bifurcation for semilinear dissipative hyperbolic systems. J. Differential Equations, 257:264–309, 2014.MathSciNetMATH I. Kmit and L. Recke. Hopf bifurcation for semilinear dissipative hyperbolic systems. J. Differential Equations, 257:264–309, 2014.MathSciNetMATH
41.
go back to reference M. Kovacic. On matrix-free pseudo-arclength continuation methods applied to a nonlocal PDE in 1+1d with pseudo-spectral time-stepping. Master’s thesis, University of Ontario Institute of Technology, 2013. M. Kovacic. On matrix-free pseudo-arclength continuation methods applied to a nonlocal PDE in 1+1d with pseudo-spectral time-stepping. Master’s thesis, University of Ontario Institute of Technology, 2013.
42.
43.
go back to reference F. Lutscher. Modeling alignment and movement of animals and cells. J. Math. Biol., 45:234–260, 2002.MathSciNetMATH F. Lutscher. Modeling alignment and movement of animals and cells. J. Math. Biol., 45:234–260, 2002.MathSciNetMATH
44.
go back to reference P. Magal and S. Ruan. On integrated semigroups and age structured models in Lp spaces. Differential Integral Equations, 20(2):197–239, 2007.MathSciNetMATH P. Magal and S. Ruan. On integrated semigroups and age structured models in Lp spaces. Differential Integral Equations, 20(2):197–239, 2007.MathSciNetMATH
45.
go back to reference J.K. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal aggregations. Science, 284(2):99–101, 1999. J.K. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal aggregations. Science, 284(2):99–101, 1999.
46.
go back to reference J.K. Parrish, S.V. Viscido, and D. Grünbaum. Self-organised fish schools: an examination of emergent properties. Biol. Bull., 202:296–305, 2002. J.K. Parrish, S.V. Viscido, and D. Grünbaum. Self-organised fish schools: an examination of emergent properties. Biol. Bull., 202:296–305, 2002.
47.
go back to reference B. Pfistner. A one dimensional model for the swarming behaviour of Myxobacteria. In G. Hoffmann W. Alt, editor, Biological Motion. Lecture Notes on Biomathematics, pages 556–563. Springer, Berlin, 1990. B. Pfistner. A one dimensional model for the swarming behaviour of Myxobacteria. In G. Hoffmann W. Alt, editor, Biological Motion. Lecture Notes on Biomathematics, pages 556–563. Springer, Berlin, 1990.
48.
go back to reference M. Pineda, C.J. Weijer, and R. Eftimie. Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations. J. Theor. Biol., 370:135–150, 2015.MathSciNetMATH M. Pineda, C.J. Weijer, and R. Eftimie. Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations. J. Theor. Biol., 370:135–150, 2015.MathSciNetMATH
49.
go back to reference W. Pönisch, C.A. Weber, G. Juckeland, N. Biais, and V. Zaburdaev. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New Journal of Physics, 19:015003, 2017.MATH W. Pönisch, C.A. Weber, G. Juckeland, N. Biais, and V. Zaburdaev. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New Journal of Physics, 19:015003, 2017.MATH
50.
go back to reference W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007.MATH W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007.MATH
51.
go back to reference J. Rankin, D. Avitabile, J. Baladron, G. Faye, and D. J. B. Lloyd. Continuation of localized coherent structures in nonlocal neural field equations. SIAM J. Sci. Comp., 36:B70–B93, 2014.MathSciNetMATH J. Rankin, D. Avitabile, J. Baladron, G. Faye, and D. J. B. Lloyd. Continuation of localized coherent structures in nonlocal neural field equations. SIAM J. Sci. Comp., 36:B70–B93, 2014.MathSciNetMATH
52.
go back to reference J. Sánchez Umbría and M. Net. Numerical continuation methods for large–scale dissipative dynamical systems. Eur. Phys. J. – Spec. Top., 225:2465–2486, 2016. J. Sánchez Umbría and M. Net. Numerical continuation methods for large–scale dissipative dynamical systems. Eur. Phys. J. – Spec. Top., 225:2465–2486, 2016.
53.
go back to reference A.P. Solon, H. Chaté, and J. Tailleur. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys. Rev. Lett., 114(6):068101, 2015. A.P. Solon, H. Chaté, and J. Tailleur. From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys. Rev. Lett., 114(6):068101, 2015.
54.
go back to reference Pliny the Elder. The Natural History. H.G. Bohn, London, 1855. (Translated by John Bostock M.D. and F.R.S. Henry T. Riley Esq.). Pliny the Elder. The Natural History. H.G. Bohn, London, 1855. (Translated by John Bostock M.D. and F.R.S. Henry T. Riley Esq.).
55.
go back to reference C.M. Topaz and A.L. Bertozzi. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math, 65(1):152–174, 2004.MathSciNetMATH C.M. Topaz and A.L. Bertozzi. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math, 65(1):152–174, 2004.MathSciNetMATH
56.
go back to reference C.M. Topaz, A.L. Bertozzi, and M.A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68:1601–1623, 2006.MathSciNetMATH C.M. Topaz, A.L. Bertozzi, and M.A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68:1601–1623, 2006.MathSciNetMATH
57.
58.
go back to reference T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226, 1995.MathSciNet T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226, 1995.MathSciNet
59.
go back to reference M. Witten, editor. Hyperbolic Partial Differential Equations. Populations, reactors, tides and waves: theory and applications. Pergamon, 1983. M. Witten, editor. Hyperbolic Partial Differential Equations. Populations, reactors, tides and waves: theory and applications. Pergamon, 1983.
60.
go back to reference D.J. Wollkind. Applications of linear hyperbolic partial equations: predator-prey systems and gravitational instability of nebulae. Mathematical Modelling, 7:413–428, 1986.MathSciNetMATH D.J. Wollkind. Applications of linear hyperbolic partial equations: predator-prey systems and gravitational instability of nebulae. Mathematical Modelling, 7:413–428, 1986.MathSciNetMATH
Metadata
Title
Kinetic Models for Pattern Formation in Animal Aggregations: A Symmetry and Bifurcation Approach
Authors
Pietro-Luciano Buono
Raluca Eftimie
Mitchell Kovacic
Lennaert van Veen
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20297-2_2

Premium Partners