Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 24/2023

27-02-2023 | Technical Article

High Strain Rate Compression Response of Kevlar and Interyarn Hybrid Carbon-Kevlar Polymer Composites

Authors: Pragati Priyanka, Pawan Sharma, Harlal Singh Mali, Prince Sharma

Published in: Journal of Materials Engineering and Performance | Issue 24/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Development and characterization of carbon-kevlar interyarn hybrid textile composites (CKI-HTCs) may direct their utilization beyond the intended service conditions of monolithic carbon and Kevlar textile composites. This work presents the response of hybrid C-K and monolithic kevlar composites under high strain rate compression (HSRC) loading. Experiments are conducted to characterize and quantify the hybridization effect on stiffness and toughness of CKI-HTCs. During laminate fabrication for sample preparation, plain and twill weaving architectures of the fabrics are considered for reinforcement into the epoxy matrix. HSRC tests are performed using a Split Hopkinson Pressure Bar (SHPB) testing apparatus. SHPB generates the strain pulses (strain rate of 1000–2300 s−1 range) on cylindrical specimens placed in between the incident and transmitted bars. The effects of strain rate variation and the fabric weaving pattern on the dynamic mechanical behavior and failure mechanisms of the textile composites are quantified through HSRC tests. The strain rate stiffening phenomenon is also analyzed. Material response to HSRC is plotted as stress–strain curves. Results suggest that the strain value for damage initiation reduces with increasing the applied strain rate. Fractography is performed on the broken samples to identify the failure mechanisms, namely the matrix fracture, fiber pull out, fiber breakage, splitting, shear fracture of plies, and fiber-matrix debonding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Dixit and H.S. Mali, Modeling Techniques for Predicting the Mechanical Properties of Woven-Fabric Textile Composites: A Review, Mech. Compos. Mater., 2013, 49(1), p 1–20. CrossRef A. Dixit and H.S. Mali, Modeling Techniques for Predicting the Mechanical Properties of Woven-Fabric Textile Composites: A Review, Mech. Compos. Mater., 2013, 49(1), p 1–20. CrossRef
2.
go back to reference K.K. Chawla, Composite Materials: Science and Engineering, 3rd ed. Springer, London, 2012.CrossRef K.K. Chawla, Composite Materials: Science and Engineering, 3rd ed. Springer, London, 2012.CrossRef
3.
go back to reference P. Priyanka, A. Dixit and H.S. Mali, High Strength Kevlar Fiber Reinforced Advanced Textile Composites, Iran. Poly. J., 2019, 28(7), p 621–638. CrossRef P. Priyanka, A. Dixit and H.S. Mali, High Strength Kevlar Fiber Reinforced Advanced Textile Composites, Iran. Poly. J., 2019, 28(7), p 621–638. CrossRef
4.
go back to reference M.J.N. Jacobs and J.L.J. Van Dingenen, Ballistic Protection Mechanisms in Personal Armour, J. Mater. Sci., 2001, 6(36), p 3137–3142. CrossRef M.J.N. Jacobs and J.L.J. Van Dingenen, Ballistic Protection Mechanisms in Personal Armour, J. Mater. Sci., 2001, 6(36), p 3137–3142. CrossRef
5.
go back to reference P. Priyanka, A. Dixit and H.S. Mali, High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures: A Review, Mechan. Compos. Mater., 2017, 53(5), p 685–704. CrossRef P. Priyanka, A. Dixit and H.S. Mali, High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures: A Review, Mechan. Compos. Mater., 2017, 53(5), p 685–704. CrossRef
6.
go back to reference A.M.S. Hamouda, R.M. Sohaimi, A.M.A. Zaidi and S. Abdullah, Materials and Design Issues for Military Helmets, Adv. Milit. Text. Person. Equip., 2012, 101, p 103–138. CrossRef A.M.S. Hamouda, R.M. Sohaimi, A.M.A. Zaidi and S. Abdullah, Materials and Design Issues for Military Helmets, Adv. Milit. Text. Person. Equip., 2012, 101, p 103–138. CrossRef
7.
go back to reference W.W. Chen and B. Song, Kolsky Compression Bar Experiments on Soft Materials, Test. Appl., 2011, 112, p 119–175. W.W. Chen and B. Song, Kolsky Compression Bar Experiments on Soft Materials, Test. Appl., 2011, 112, p 119–175.
8.
go back to reference P. Sharma, H.S. Mali and A. Dixit, Mechanical Behavior and Fracture Toughness Characterization of High Strength Fiber Reinforced Polymer Textile Composites, Iran. Poly. J., 2021, 30(2), p 193–233. CrossRef P. Sharma, H.S. Mali and A. Dixit, Mechanical Behavior and Fracture Toughness Characterization of High Strength Fiber Reinforced Polymer Textile Composites, Iran. Poly. J., 2021, 30(2), p 193–233. CrossRef
9.
go back to reference J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein and C.R. Siviour, Review of Experimental Techniques for High Rate Deformation and Shock Studies, Int. J. Impact Eng., 2004, 1, p 725–775. CrossRef J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein and C.R. Siviour, Review of Experimental Techniques for High Rate Deformation and Shock Studies, Int. J. Impact Eng., 2004, 1, p 725–775. CrossRef
10.
go back to reference B. Hopkinson, (1914) A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets. Philosoph. Trans. Royal Soc. London Ser. A. 213(508): 437–456 B. Hopkinson, (1914) A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets. Philosoph. Trans. Royal Soc. London Ser. A. 213(508): 437–456
11.
go back to reference H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc. Sect. B., 1949, 62(11), p 676–700. CrossRef H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc. Sect. B., 1949, 62(11), p 676–700. CrossRef
12.
go back to reference E.D.H. Davies and S.C. Hunter, The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar, J. Mechan. Phys. Solids, 1963, 11(3), p 155–179. CrossRef E.D.H. Davies and S.C. Hunter, The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar, J. Mechan. Phys. Solids, 1963, 11(3), p 155–179. CrossRef
13.
go back to reference P.S. Follansbee and C. Frantz, Wave Propagation in the Split Hopkinson Pressure Bar, J. Eng. Mater. Technol. Trans. ASME, 1983, 105(1), p 61–66. CrossRef P.S. Follansbee and C. Frantz, Wave Propagation in the Split Hopkinson Pressure Bar, J. Eng. Mater. Technol. Trans. ASME, 1983, 105(1), p 61–66. CrossRef
14.
go back to reference I.G. Crouch, Body Armour-New Materials New Systems, Defence Technol., 2019, 32, p 241–253. CrossRef I.G. Crouch, Body Armour-New Materials New Systems, Defence Technol., 2019, 32, p 241–253. CrossRef
15.
go back to reference P.J. Hazell, Armour: Materials Theory and Design. CRC Press, 2016. P.J. Hazell, Armour: Materials Theory and Design. CRC Press, 2016.
16.
go back to reference A. Quilter, Composites in Aerospace Applications, IHS White Paper, 2001, 444(1), p 1–5. A. Quilter, Composites in Aerospace Applications, IHS White Paper, 2001, 444(1), p 1–5.
17.
go back to reference F. Rubino, A. Nisticò, F. Tucci and P. Carlone, Marine Application of Fiber Reinforced Composites: A Review, J. Marine Sci. Eng. MDPI AG, 2020, 8(1), p 26. CrossRef F. Rubino, A. Nisticò, F. Tucci and P. Carlone, Marine Application of Fiber Reinforced Composites: A Review, J. Marine Sci. Eng. MDPI AG, 2020, 8(1), p 26. CrossRef
18.
go back to reference A. Pegoretti, M. Traina, and M. Vlasblom, Handbook of Properties of Textile and Technical Fibres. The Textil 2018. A. Pegoretti, M. Traina, and M. Vlasblom, Handbook of Properties of Textile and Technical Fibres. The Textil 2018.
19.
go back to reference I.G. Crouch, J. Sandlin and S. Thomas, Polymers and Fibre-Reinforced Plastics, Sci. Armour Mater., 2017, 21, p 203–268. CrossRef I.G. Crouch, J. Sandlin and S. Thomas, Polymers and Fibre-Reinforced Plastics, Sci. Armour Mater., 2017, 21, p 203–268. CrossRef
20.
go back to reference H. Chouhan, N. Asija, S.A. Gebremeskel and N. Bhatnagar, Effect of Specimen Thickness on High Strain Rate Properties of Kevlar/Polypropylene Composite, Procedia Engineering, 2017, 173, p 694–701. CrossRef H. Chouhan, N. Asija, S.A. Gebremeskel and N. Bhatnagar, Effect of Specimen Thickness on High Strain Rate Properties of Kevlar/Polypropylene Composite, Procedia Engineering, 2017, 173, p 694–701. CrossRef
21.
go back to reference H. Meng and Q.M. Li, Correlation between the Accuracy of a SHPB Test and the Stress Uniformity Based on Numerical Experiments, Int. J. Impact Eng. Pergamon, 2003, 28(5), p 537–555. CrossRef H. Meng and Q.M. Li, Correlation between the Accuracy of a SHPB Test and the Stress Uniformity Based on Numerical Experiments, Int. J. Impact Eng. Pergamon, 2003, 28(5), p 537–555. CrossRef
22.
go back to reference F.S. Al-Hazmi, “High Strain Rate Behaviour of Carbon Fibre Composites. Loughborough University of Technology, 1995. F.S. Al-Hazmi, “High Strain Rate Behaviour of Carbon Fibre Composites. Loughborough University of Technology, 1995.
23.
go back to reference R. Kapoor, L. Pangeni, A.K. Bandaru, S. Ahmad and N. Bhatnagar, High Strain Rate Compression Response of Woven Kevlar Reinforced Polypropylene Composites, Compos. Part B Eng., 2016, 89, p 374–382. CrossRef R. Kapoor, L. Pangeni, A.K. Bandaru, S. Ahmad and N. Bhatnagar, High Strain Rate Compression Response of Woven Kevlar Reinforced Polypropylene Composites, Compos. Part B Eng., 2016, 89, p 374–382. CrossRef
24.
go back to reference R.R. Dias, I.M. Pereira and B.G. Soares, Use of the Split Hopkinson Pressure Bar on Performance Evaluation of Polymer Composites for Ballistic Protection Purposes, Global J. Res. Eng., 2019, 19(November), p 31–39. R.R. Dias, I.M. Pereira and B.G. Soares, Use of the Split Hopkinson Pressure Bar on Performance Evaluation of Polymer Composites for Ballistic Protection Purposes, Global J. Res. Eng., 2019, 19(November), p 31–39.
25.
go back to reference S.C. Woo and T.W. Kim, High Strain-Rate Failure in Carbon/Kevlar Hybrid Woven Composites via a Novel SHPB-AE Coupled Test, Compos. B Eng., 2016, 97, p 317–328. CrossRef S.C. Woo and T.W. Kim, High Strain-Rate Failure in Carbon/Kevlar Hybrid Woven Composites via a Novel SHPB-AE Coupled Test, Compos. B Eng., 2016, 97, p 317–328. CrossRef
26.
go back to reference N.K. Naik and V.R. Kavala, High Strain Rate Behavior of Woven Fabric Composites under Compressive Loading, Mater. Sci. Eng., A, 2008, 474(1–2), p 301–311. CrossRef N.K. Naik and V.R. Kavala, High Strain Rate Behavior of Woven Fabric Composites under Compressive Loading, Mater. Sci. Eng., A, 2008, 474(1–2), p 301–311. CrossRef
27.
go back to reference A.K. Bandaru, V.K. Mittal, H. Chouhan, N. Asija, N. Bhatnagar and S. Ahmad, Characterization of 3D Angle-Interlock Thermoplastic Composites under High Strain Rate Compression Loadings, Polymer Test., 2017, 62, p 355–365. CrossRef A.K. Bandaru, V.K. Mittal, H. Chouhan, N. Asija, N. Bhatnagar and S. Ahmad, Characterization of 3D Angle-Interlock Thermoplastic Composites under High Strain Rate Compression Loadings, Polymer Test., 2017, 62, p 355–365. CrossRef
28.
go back to reference S. Cao, Q. Chen, Y. Wang, S. Xuan, W. Jiang and X. Gong, High Strain-Rate Dynamic Mechanical Properties of Kevlar Fabrics Impregnated with Shear Thickening Fluid, Compos. A Appl. Sci. Manuf., 2017, 100, p 161–169. CrossRef S. Cao, Q. Chen, Y. Wang, S. Xuan, W. Jiang and X. Gong, High Strain-Rate Dynamic Mechanical Properties of Kevlar Fabrics Impregnated with Shear Thickening Fluid, Compos. A Appl. Sci. Manuf., 2017, 100, p 161–169. CrossRef
29.
go back to reference T. Iwamoto, C. Ruiz, H. Kuhn, and D. Medlin, “ASM Handbook,” 8th ed., (Materials Park, Ohio), ASM International, 2000. T. Iwamoto, C. Ruiz, H. Kuhn, and D. Medlin, “ASM Handbook,” 8th ed., (Materials Park, Ohio), ASM International, 2000.
30.
go back to reference R. Narayanasamy and K.S. Pandey, Phenomenon of Barrelling in Aluminium Solid Cylinders during Cold Upset-Forming, J. Mater. Process. Technol., 1997, 70(1–3), p 17–21. CrossRef R. Narayanasamy and K.S. Pandey, Phenomenon of Barrelling in Aluminium Solid Cylinders during Cold Upset-Forming, J. Mater. Process. Technol., 1997, 70(1–3), p 17–21. CrossRef
31.
go back to reference G.T. GRAY, Classic Split Hopkinson Pressure Bar Testing. ASM International, H. Kuhn and D. Medlin, Eds., 8th ed., (Ohio, USA, ASM handbook. Mechanical testing and evaluation, 2000). G.T. GRAY, Classic Split Hopkinson Pressure Bar Testing. ASM International, H. Kuhn and D. Medlin, Eds., 8th ed., (Ohio, USA, ASM handbook. Mechanical testing and evaluation, 2000).
32.
go back to reference C. Frantz, P. Follansbee, and W. Wright, “New Experimental Techniques with the Split Hopkinson Pressure Bar,” (San Antonio, Texas, USA), 8th international conference on high energy rate fabrication, 1984. C. Frantz, P. Follansbee, and W. Wright, “New Experimental Techniques with the Split Hopkinson Pressure Bar,” (San Antonio, Texas, USA), 8th international conference on high energy rate fabrication, 1984.
33.
go back to reference K. Xia and W. Yao, Dynamic Rock Tests Using Split Hopkinson (Kolsky) Bar System-A Review, J. Rock Mechan. Geotechn. Eng., 2015, 12, p 27–59. CrossRef K. Xia and W. Yao, Dynamic Rock Tests Using Split Hopkinson (Kolsky) Bar System-A Review, J. Rock Mechan. Geotechn. Eng., 2015, 12, p 27–59. CrossRef
34.
go back to reference Y.X. Zhou, K. Xia, X.B. Li, H.B. Li, G.W. Ma, J. Zhao, Z.L. Zhou, and F. Dai, Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, Springer International Publishing, 2011, p 35–44. Y.X. Zhou, K. Xia, X.B. Li, H.B. Li, G.W. Ma, J. Zhao, Z.L. Zhou, and F. Dai, Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, Springer International Publishing, 2011, p 35–44.
35.
go back to reference H. Kolsky, Stress waves in solids, UK), Clarendon Press, Oxford, 1953. H. Kolsky, Stress waves in solids, UK), Clarendon Press, Oxford, 1953.
36.
go back to reference T. Bhujangrao, C. Froustey, E. Iriondo, F. Veiga, P. Darnis, F.G. Mata, Review of Intermediate Strain Rate Testing Devices. Metals, MDPI AG, 2020, p 1–24. T. Bhujangrao, C. Froustey, E. Iriondo, F. Veiga, P. Darnis, F.G. Mata, Review of Intermediate Strain Rate Testing Devices. Metals, MDPI AG, 2020, p 1–24.
37.
go back to reference D.J. Frew, M.J. Forrestal and W. Chen, Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar, Exp. Mechan. Sci. Bus. Media LLC, 2002, 42(1), p 93–106. D.J. Frew, M.J. Forrestal and W. Chen, Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar, Exp. Mechan. Sci. Bus. Media LLC, 2002, 42(1), p 93–106.
38.
go back to reference P. Priyanka, H.S. Mali and A. Dixit, Mesoscale Numerical Characterization of Kevlar and Carbon-Kevlar Hybrid Plain-Woven Fabric Compression Behavior, J. Mater. Eng. Perform., 2019, 28(9), p 5749–5762. CrossRef P. Priyanka, H.S. Mali and A. Dixit, Mesoscale Numerical Characterization of Kevlar and Carbon-Kevlar Hybrid Plain-Woven Fabric Compression Behavior, J. Mater. Eng. Perform., 2019, 28(9), p 5749–5762. CrossRef
39.
go back to reference K. Xia, Status of Characterization of Strength and Fracture Properties of Rocks under Dynamic Loading. Rock Fragmentation by Blasting: Proceedings of the 10th International Symposium on Rock Fragmentation by Blasting, S.A. Singh PK, Ed., (CRC Press, 2012) 41–51. K. Xia, Status of Characterization of Strength and Fracture Properties of Rocks under Dynamic Loading. Rock Fragmentation by Blasting: Proceedings of the 10th International Symposium on Rock Fragmentation by Blasting, S.A. Singh PK, Ed., (CRC Press, 2012) 41–51.
40.
go back to reference S.C. Woo and T.W. Kim, High-Strain-Rate Impact in Kevlar-Woven Composites and Fracture Analysis Using Acoustic Emission, Compos. Part B Eng., 2014, 60, p 125–136. CrossRef S.C. Woo and T.W. Kim, High-Strain-Rate Impact in Kevlar-Woven Composites and Fracture Analysis Using Acoustic Emission, Compos. Part B Eng., 2014, 60, p 125–136. CrossRef
41.
go back to reference Y.Z. Wan, G.C. Chen, Y. Huang, Q.Y. Li, F.G. Zhou, J.Y. Xin and Y.L. Wang, Characterization of Three-Dimensional Braided Carbon/Kevlar Hybrid Composites for Orthopedic Usage, Mater. Sci. Eng. A, 2005, 398(1–2), p 227–232. CrossRef Y.Z. Wan, G.C. Chen, Y. Huang, Q.Y. Li, F.G. Zhou, J.Y. Xin and Y.L. Wang, Characterization of Three-Dimensional Braided Carbon/Kevlar Hybrid Composites for Orthopedic Usage, Mater. Sci. Eng. A, 2005, 398(1–2), p 227–232. CrossRef
42.
go back to reference R. Park and J. Jang, Impact Behavior of Aramid Fiber/Glass Fiber Hybrid Composite: Evaluation of Four-Layer Hybrid Composites, J. Mater. Sci., 2001, 36(9), p 2359–2367. CrossRef R. Park and J. Jang, Impact Behavior of Aramid Fiber/Glass Fiber Hybrid Composite: Evaluation of Four-Layer Hybrid Composites, J. Mater. Sci., 2001, 36(9), p 2359–2367. CrossRef
43.
go back to reference R.A. Abeles Couillard and P. Schwartz, Bending Fatigue of Carbon-Fiber-Reinforced Epoxy Composite Strands, Compos. Sci. Technol., 1997, 57(2), p 229–235. CrossRef R.A. Abeles Couillard and P. Schwartz, Bending Fatigue of Carbon-Fiber-Reinforced Epoxy Composite Strands, Compos. Sci. Technol., 1997, 57(2), p 229–235. CrossRef
44.
go back to reference M.-S. Cao, W. Zhou, Y. Lei and J. Rong, Behavior Characterization of Dynamic Mechanical Response for Carbon/Epoxy Composites Under Compressive Load, J. Mater. Eng. Perform., 2008, 4, p 01521. M.-S. Cao, W. Zhou, Y. Lei and J. Rong, Behavior Characterization of Dynamic Mechanical Response for Carbon/Epoxy Composites Under Compressive Load, J. Mater. Eng. Perform., 2008, 4, p 01521.
45.
go back to reference Y.Z. Wan, Y. Huang, F. He, Q.Y. Li and J.J. Lian, Tribological Properties of Three-Dimensional Braided Carbon/Kevlar/Epoxy Hybrid Composites under Dry and Lubricated Conditions, Mater. Sci. Eng., A, 2007, 452–453, p 202–209. CrossRef Y.Z. Wan, Y. Huang, F. He, Q.Y. Li and J.J. Lian, Tribological Properties of Three-Dimensional Braided Carbon/Kevlar/Epoxy Hybrid Composites under Dry and Lubricated Conditions, Mater. Sci. Eng., A, 2007, 452–453, p 202–209. CrossRef
Metadata
Title
High Strain Rate Compression Response of Kevlar and Interyarn Hybrid Carbon-Kevlar Polymer Composites
Authors
Pragati Priyanka
Pawan Sharma
Harlal Singh Mali
Prince Sharma
Publication date
27-02-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 24/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-07953-y

Other articles of this Issue 24/2023

Journal of Materials Engineering and Performance 24/2023 Go to the issue

Premium Partners