Skip to main content
Top
Published in: Cellulose 1/2016

26-11-2015 | Original Paper

High strain rate radial compression of Norway spruce earlywood and latewood

Authors: Carolina S. Moilanen, Tomas Björkqvist, Birgitta A. Engberg, Lauri I. Salminen, Pentti Saarenrinne

Published in: Cellulose | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of Norway spruce were studied and a compression model for mechanical pulping was developed. The split-Hopkinson pressure bar technique was combined with high-speed photography to analyse local radial compression. Data analysis focussed on the differences between mechanical properties of earlywood and latewood. Measurements were conducted at both room temperature and 135 °C. The effect of pre-fatigue treatment was also studied. A simple material model was defined linearly in parts and fitted to the measurement data to quantify the differences. New results were found on the differences in inelastic behaviour of earlywood and latewood at large deformations. In addition, other results were in line with previously published results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bergander A, Salmén L (2000) Transverse elastic modulus of the native wood fibre wall. J Pulp Pap Sci 26:234–238 Bergander A, Salmén L (2000) Transverse elastic modulus of the native wood fibre wall. J Pulp Pap Sci 26:234–238
go back to reference Boutelje JB (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung 16:33–46CrossRef Boutelje JB (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung 16:33–46CrossRef
go back to reference Bragov A, Lomunov AK (1997) Dynamic properties of some wood species. J Phys IV JP 7:C3-487-C3-492 Bragov A, Lomunov AK (1997) Dynamic properties of some wood species. J Phys IV JP 7:C3-487-C3-492
go back to reference De Magistris F (2005) Wood fibre deformation ain combined shear and compression, Doctoral Thesis, KTH Royal Institute of Technology De Magistris F (2005) Wood fibre deformation ain combined shear and compression, Doctoral Thesis, KTH Royal Institute of Technology
go back to reference Dumail J-, Salmén L (1996) Compression behaviour of spruce wood under large plastic deformations. Nord Pulp Pap Res J 11:239–242CrossRef Dumail J-, Salmén L (1996) Compression behaviour of spruce wood under large plastic deformations. Nord Pulp Pap Res J 11:239–242CrossRef
go back to reference Farruggia F, Perré P (2000) Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce. Wood Sci Technol 34:65–82CrossRef Farruggia F, Perré P (2000) Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce. Wood Sci Technol 34:65–82CrossRef
go back to reference Fortino S, Hradil P, Salminen L, De Magistris F (2015) A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading. J Mater Sci 50:482–492. doi:10.1007/s10853-014-8608-2 CrossRef Fortino S, Hradil P, Salminen L, De Magistris F (2015) A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading. J Mater Sci 50:482–492. doi:10.​1007/​s10853-014-8608-2 CrossRef
go back to reference Gama BA (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57:223–250CrossRef Gama BA (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57:223–250CrossRef
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids structure and properties. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids structure and properties. Cambridge University Press, CambridgeCrossRef
go back to reference Gray III GT (2000) Classic split-Hopkinson pressure Bar Testing. In: Mechanical testing and evaluation, ASM Handbook, vol 8. ASM International, pp 462–476 Gray III GT (2000) Classic split-Hopkinson pressure Bar Testing. In: Mechanical testing and evaluation, ASM Handbook, vol 8. ASM International, pp 462–476
go back to reference Hamad WY, Provan JW (1995) Microstructural cumulative material degradation and fatigue-failure micromechanisms in wood-pulp fibres. Cellulose 2:159–177. doi:10.1007/BF00813016 CrossRef Hamad WY, Provan JW (1995) Microstructural cumulative material degradation and fatigue-failure micromechanisms in wood-pulp fibres. Cellulose 2:159–177. doi:10.​1007/​BF00813016 CrossRef
go back to reference Hickey KL, Rudie AW (1993) Preferential Energy absorption by Earlywood in cyclic compression of Loblolly pine. In: International mechanical pulping conference, pp 81–86 Hickey KL, Rudie AW (1993) Preferential Energy absorption by Earlywood in cyclic compression of Loblolly pine. In: International mechanical pulping conference, pp 81–86
go back to reference Holmgren S, Svensson BA, Gradin PA, Lundberg B (2008) An encapsulated split Hopkinson pressure bar for testing of wood at elevated strain rate, temperature, and pressure. Exp Tech 32:44–50CrossRef Holmgren S, Svensson BA, Gradin PA, Lundberg B (2008) An encapsulated split Hopkinson pressure bar for testing of wood at elevated strain rate, temperature, and pressure. Exp Tech 32:44–50CrossRef
go back to reference Kure K, Dahlqvist D, Sabourin MJ, Helle T (1999) Development of spruce fiber properties by a combination of a pressurized compressive pretreatment and high intensity refining. In: International mechanical pulping conference, Houston, USA, TAPPI, pp 427–433 Kure K, Dahlqvist D, Sabourin MJ, Helle T (1999) Development of spruce fiber properties by a combination of a pressurized compressive pretreatment and high intensity refining. In: International mechanical pulping conference, Houston, USA, TAPPI, pp 427–433
go back to reference Law KN, Kokta BV, Mao C (2006) Compression properties of wood and fibre failures. J Pulp Pap Sci 32:224–230 Law KN, Kokta BV, Mao C (2006) Compression properties of wood and fibre failures. J Pulp Pap Sci 32:224–230
go back to reference Lönnberg B (2009) Mechanical pulping 2nd edition. In: Papermaking science and technology, vol 5. Paperi ja Puu, Helsinki Lönnberg B (2009) Mechanical pulping 2nd edition. In: Papermaking science and technology, vol 5. Paperi ja Puu, Helsinki
go back to reference Lucander M, Asikainen S, Pöhler T, Saharinen E, Björkqvist T (2009) Fatigue treatment of wood by high-frequency cyclic loading. J Pulp Pap Sci 35:81–85 Lucander M, Asikainen S, Pöhler T, Saharinen E, Björkqvist T (2009) Fatigue treatment of wood by high-frequency cyclic loading. J Pulp Pap Sci 35:81–85
go back to reference Miksic A, Myntti M, Koivisto J, Salminen L, Alava M (2013) Effect of fatigue and annual rings orientation on mechanical properties of wood under cross-grain uniaxial compression. Wood Sci Technol 47:1117–1133. doi:10.1007/s00226-013-0561-8 CrossRef Miksic A, Myntti M, Koivisto J, Salminen L, Alava M (2013) Effect of fatigue and annual rings orientation on mechanical properties of wood under cross-grain uniaxial compression. Wood Sci Technol 47:1117–1133. doi:10.​1007/​s00226-013-0561-8 CrossRef
go back to reference Müller U, Gindl W, Teischinger A (2003) Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA J 24:117–128CrossRef Müller U, Gindl W, Teischinger A (2003) Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA J 24:117–128CrossRef
go back to reference Reid SR, Peng C (1997) Dynamic uniaxial crushing of wood. Int J Impact Eng 19:531–570CrossRef Reid SR, Peng C (1997) Dynamic uniaxial crushing of wood. Int J Impact Eng 19:531–570CrossRef
go back to reference Renaud M, Rueff M, Rocaboy AC (1996) Mechanical behaviour of saturated wood under compression: part 1. Behaviour of wood at high rates of strain. Wood Sci Technol 30:153–164 Renaud M, Rueff M, Rocaboy AC (1996) Mechanical behaviour of saturated wood under compression: part 1. Behaviour of wood at high rates of strain. Wood Sci Technol 30:153–164
go back to reference Salmén L (1987) The effect of the frequency of a mechanical deformation on the fatigue of wood. J Pulp Pap Sci 13:23–28 Salmén L (1987) The effect of the frequency of a mechanical deformation on the fatigue of wood. J Pulp Pap Sci 13:23–28
go back to reference Salmén L, Tigerstrom A, Fellers C (1985) Fatigue of wood—characterization of mechanical defibration. J Pulp Pap Sci 11:68–73 Salmén L, Tigerstrom A, Fellers C (1985) Fatigue of wood—characterization of mechanical defibration. J Pulp Pap Sci 11:68–73
go back to reference Salmén L, Dumail JF, Uhmeier A (1997) Compression behaviour of wood in relation to mechanical pulping. In: International mechanical pulping conference, pp 207–211 Salmén L, Dumail JF, Uhmeier A (1997) Compression behaviour of wood in relation to mechanical pulping. In: International mechanical pulping conference, pp 207–211
go back to reference Salmi A, Salminen L, Hæggström E (2009) Quantifying fatigue generated in high strain rate cyclic loading of Norway spruce. J Appl Phys. doi:10.1063/1.3257176 Salmi A, Salminen L, Hæggström E (2009) Quantifying fatigue generated in high strain rate cyclic loading of Norway spruce. J Appl Phys. doi:10.​1063/​1.​3257176
go back to reference Salmi A, Saharinen E, Hæggström E (2011) Layer-like fatigue is induced during mechanical pulping. Cellulose 18:1423–1432CrossRef Salmi A, Saharinen E, Hæggström E (2011) Layer-like fatigue is induced during mechanical pulping. Cellulose 18:1423–1432CrossRef
go back to reference Salmi A, Salminen LI, Engberg BA, Björkqvist T, Hæggström E (2012a) Repetitive impact loading causes local plastic deformation in wood. J Appl Phys. doi:10.1063/1.3676206 Salmi A, Salminen LI, Engberg BA, Björkqvist T, Hæggström E (2012a) Repetitive impact loading causes local plastic deformation in wood. J Appl Phys. doi:10.​1063/​1.​3676206
go back to reference Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59:641–646. doi:10.1515/HF.2005.103 CrossRef Serrano E, Enquist B (2005) Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung 59:641–646. doi:10.​1515/​HF.​2005.​103 CrossRef
go back to reference Sutton M, Orteau J, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer, New York Sutton M, Orteau J, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer, New York
go back to reference Tabarsa T, Chui YH (2000) Stress-strain response of wood under radial compression: part I. Test method and influences of cellular properties. Wood Fiber Sci 32:144–152 Tabarsa T, Chui YH (2000) Stress-strain response of wood under radial compression: part I. Test method and influences of cellular properties. Wood Fiber Sci 32:144–152
go back to reference Uhmeier A, Salmén L (1996) Influence of strain rate and temperature on the radial compression behavior of wet spruce. J Eng Mater Technol Trans ASME 118:289–294CrossRef Uhmeier A, Salmén L (1996) Influence of strain rate and temperature on the radial compression behavior of wet spruce. J Eng Mater Technol Trans ASME 118:289–294CrossRef
go back to reference Valla A, Konnerth D, Keunecke D, Niemz P, Muller U, Gindl W (2011) Comparison of two optical methods for contactless, full field and highly sensitive in-plane deformation measurements using the example of plywood. Wood Sci Technol 45:755–765CrossRef Valla A, Konnerth D, Keunecke D, Niemz P, Muller U, Gindl W (2011) Comparison of two optical methods for contactless, full field and highly sensitive in-plane deformation measurements using the example of plywood. Wood Sci Technol 45:755–765CrossRef
go back to reference Viforr S, Salmén L (2008) Shear/compression of chips for lower energy consumption in TMP refining. Appita J 61:49–55 Viforr S, Salmén L (2008) Shear/compression of chips for lower energy consumption in TMP refining. Appita J 61:49–55
go back to reference Widehammar S (2002) A method for dispersive split Hopkinson pressure bar analysis applied to high strain rate testing of spruce wood. Department of Materials Science, Uppsala University, Uppsala Widehammar S (2002) A method for dispersive split Hopkinson pressure bar analysis applied to high strain rate testing of spruce wood. Department of Materials Science, Uppsala University, Uppsala
go back to reference Widehammar S (2004) Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp Mech 44:44–48CrossRef Widehammar S (2004) Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp Mech 44:44–48CrossRef
Metadata
Title
High strain rate radial compression of Norway spruce earlywood and latewood
Authors
Carolina S. Moilanen
Tomas Björkqvist
Birgitta A. Engberg
Lauri I. Salminen
Pentti Saarenrinne
Publication date
26-11-2015
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0826-5

Other articles of this Issue 1/2016

Cellulose 1/2016 Go to the issue