Skip to main content
Top
Published in: Rare Metals 3/2018

13-02-2018

High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy

Authors: Wen-Tao Qu, Xu-Guang Sun, Song-Xiao Hui, Zhen-Guo Wang, Yan Li

Published in: Rare Metals | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy was investigated by a Gleeble-1500D thermal simulator. The height reduction was 50%, corresponding to a true strain of 0.693. The strain rate ranging from 0.01 to 10.00 s−1 and the deformation temperature ranging from 800 to 950 °C were considered. The flow stress and the apparent activation energy for deformation, along with the constitutive equation, were used to analyze the behavior of the Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. The processing map was established. The effect of strain rate on the microstructure at 850 °C was evaluated. The flow stress–strain curves indicated that the peak flow stresses increased along with an increase in the strain rate and decreased as the deformation temperature increased. Based on the true stress–true strain curves, the constitutive equation was established and followed as the \(\dot{\varepsilon } = 6.58 \times 10^{10} \left[ {{ \sinh }\left( {0.0113\sigma } \right)} \right]^{3.44} { \exp }\left( { - 245481.3/RT} \right)\). The processing map exhibited the “unsafe” region at the strain rate of 10 s−1 and the temperature of 850 °C, and the rest region was “safe”. The deformation microstructure demonstrated that both dynamic recovery (DRV) and dynamic recrystallization (DRX) existed during deformation. At the lower strain rate of 0.01 s−1, the main deformation mechanism was the DRV, and the DRX was the dominant deformation mechanism at the higher strain rate of 1.00 s−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Song XY, Li Y, Zhang F. Microstructure and mechanical properties of Nb-and Mo-modified NiTi-Al-based intermetallics processed by isothermal forging. Mater Sci Eng A. 2014;594:229.CrossRef Song XY, Li Y, Zhang F. Microstructure and mechanical properties of Nb-and Mo-modified NiTi-Al-based intermetallics processed by isothermal forging. Mater Sci Eng A. 2014;594:229.CrossRef
[2]
go back to reference Wang ZG, Cai HJ, Hui SX. Microstructure and mechanical properties of a novel Ti–Al–Cr–Fe titanium alloy after solution treatment. J Alloys Compd. 2015;640:253.CrossRef Wang ZG, Cai HJ, Hui SX. Microstructure and mechanical properties of a novel Ti–Al–Cr–Fe titanium alloy after solution treatment. J Alloys Compd. 2015;640:253.CrossRef
[3]
go back to reference An Z, Li JS, Feng Y. Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion. Rare Met. 2016;35(2):154.CrossRef An Z, Li JS, Feng Y. Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion. Rare Met. 2016;35(2):154.CrossRef
[4]
go back to reference Sun ZC, Yang H, Han GJ, Fan XG. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A. 2010;527:3464.CrossRef Sun ZC, Yang H, Han GJ, Fan XG. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy. Mater Sci Eng A. 2010;527:3464.CrossRef
[5]
go back to reference Lei LM, Huang X, Wang MM, Wang LQ, Qin JN, Li HP, Lu SQ. Effect of hot compressive deformation on the martensite transformation of Ti–10V–2Fe–3Al titanium alloy. Mater Sci Eng A. 2011;530(1):591.CrossRef Lei LM, Huang X, Wang MM, Wang LQ, Qin JN, Li HP, Lu SQ. Effect of hot compressive deformation on the martensite transformation of Ti–10V–2Fe–3Al titanium alloy. Mater Sci Eng A. 2011;530(1):591.CrossRef
[6]
go back to reference Wang G, Hui SX, Ye WJ, Mi XJ. Hot compressive behavior of Ti–3.0Al–3.7Cr–2.0Fe–0.1B titanium alloy. Trans Nonferrous Met Soc China. 2012;22(12):2965.CrossRef Wang G, Hui SX, Ye WJ, Mi XJ. Hot compressive behavior of Ti–3.0Al–3.7Cr–2.0Fe–0.1B titanium alloy. Trans Nonferrous Met Soc China. 2012;22(12):2965.CrossRef
[7]
go back to reference Hua K, Xue XY, Kou HC, Fan JK, Tang B, Li JS. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553. J Alloys Compd. 2014;615:531–7.CrossRef Hua K, Xue XY, Kou HC, Fan JK, Tang B, Li JS. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553. J Alloys Compd. 2014;615:531–7.CrossRef
[8]
go back to reference An Z, Li JS, Feng Y. Microstructure evolution of a new near-b titanium alloy: Ti555211 during high-temperature deformation. Rare Met. 2015;34(11):757.CrossRef An Z, Li JS, Feng Y. Microstructure evolution of a new near-b titanium alloy: Ti555211 during high-temperature deformation. Rare Met. 2015;34(11):757.CrossRef
[9]
go back to reference Tao ZJ, Yang H, Li H, Ma J, Gao PF. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.CrossRef Tao ZJ, Yang H, Li H, Ma J, Gao PF. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.CrossRef
[10]
go back to reference Zhao AM, Yang H, Fan XG, Gao PF, Zuo R, Meng M. The flow behavior and microstructure evolution during (α + β) deformation of β wrought TA15 titanium alloy. Mater Design. 2016;109:112.CrossRef Zhao AM, Yang H, Fan XG, Gao PF, Zuo R, Meng M. The flow behavior and microstructure evolution during (α + β) deformation of β wrought TA15 titanium alloy. Mater Design. 2016;109:112.CrossRef
[11]
go back to reference Gao J, Li MQ, Liu GJ, Liu SF. Deformation behavior and processing maps during isothermal compression of TC21 alloy. Rare Met. 2017;36(2):86.CrossRef Gao J, Li MQ, Liu GJ, Liu SF. Deformation behavior and processing maps during isothermal compression of TC21 alloy. Rare Met. 2017;36(2):86.CrossRef
[12]
go back to reference Wang G, Hui SX, Ye WJ, Mi XJ, Wang YL, Zhang WJ. Microstructure and tensile properties of low cost titanium alloys at different cooling rate. Rare Met. 2012;31(6):531.CrossRef Wang G, Hui SX, Ye WJ, Mi XJ, Wang YL, Zhang WJ. Microstructure and tensile properties of low cost titanium alloys at different cooling rate. Rare Met. 2012;31(6):531.CrossRef
[13]
go back to reference Wang G, Hui SX, Ye WJ, Mi XJ. Influence of solution treatment on microstructure and mechanical properties of Ti–3.0Al–2.3Cr–1.3Fe titanium alloy. Chin J Nonferrous Met. 2012;22(8):3015. Wang G, Hui SX, Ye WJ, Mi XJ. Influence of solution treatment on microstructure and mechanical properties of Ti–3.0Al–2.3Cr–1.3Fe titanium alloy. Chin J Nonferrous Met. 2012;22(8):3015.
[14]
go back to reference Wang G, Hui SX, Ye WJ, Mi XJ. Hot compressive behavior of Ti–3.0Al–3.7Cr–2.0Fe low cost titanium alloy. Chin J Nonferrous Met. 2012;22(8):2223. Wang G, Hui SX, Ye WJ, Mi XJ. Hot compressive behavior of Ti–3.0Al–3.7Cr–2.0Fe low cost titanium alloy. Chin J Nonferrous Met. 2012;22(8):2223.
[15]
go back to reference Zhang JL, Guo HZ, Liang HQ. Hot deformation behavior and process parameter optimization of Ti22Al25Nb using processing map. Rare Met. 2016;35(1):118.CrossRef Zhang JL, Guo HZ, Liang HQ. Hot deformation behavior and process parameter optimization of Ti22Al25Nb using processing map. Rare Met. 2016;35(1):118.CrossRef
[16]
go back to reference Qin C, Yao ZK, Ning YQ, Shi ZF, Guo HZ. Hot deformation behavior of TC11/Ti–22Al–25Nb dual-alloy in isothermal compression. Trans Nonferrous Met Soc China. 2015;25(7):2195.CrossRef Qin C, Yao ZK, Ning YQ, Shi ZF, Guo HZ. Hot deformation behavior of TC11/Ti–22Al–25Nb dual-alloy in isothermal compression. Trans Nonferrous Met Soc China. 2015;25(7):2195.CrossRef
[17]
go back to reference Xu HB, Meng LJ, Xu J, Li Y, Zhao XQ. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics. 2007;15(5–6):778.CrossRef Xu HB, Meng LJ, Xu J, Li Y, Zhao XQ. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics. 2007;15(5–6):778.CrossRef
[18]
go back to reference Lu SQ, Ouyang DL, Cui X, Wang KL. Dynamic recrystallization behavior of burn resistant titanium alloy Ti–25V–15Cr–0.2Si. Trans Nonferrous Met Soc China. 2016;26(4):1003.CrossRef Lu SQ, Ouyang DL, Cui X, Wang KL. Dynamic recrystallization behavior of burn resistant titanium alloy Ti–25V–15Cr–0.2Si. Trans Nonferrous Met Soc China. 2016;26(4):1003.CrossRef
[19]
go back to reference Liu B, Liu YG, Qiu CZ, Zhou CX, Li JB, Li HZ, He YH. Design of low-cost titanium aluminide intermetallics. J Alloys Compd. 2015;640:298.CrossRef Liu B, Liu YG, Qiu CZ, Zhou CX, Li JB, Li HZ, He YH. Design of low-cost titanium aluminide intermetallics. J Alloys Compd. 2015;640:298.CrossRef
[20]
go back to reference Yu H, Liu SS, Liu LG, Ren WB, Li J. Hot mechanical behavior and deformability of TA17 titanium alloy. Chin J Rare Met. 2017;41(1):2. Yu H, Liu SS, Liu LG, Ren WB, Li J. Hot mechanical behavior and deformability of TA17 titanium alloy. Chin J Rare Met. 2017;41(1):2.
[21]
go back to reference Abbasi SM, Momeni A, Lin YC, Jafarian HR. Dynamic softening mechanism in Ti–13V–11Cr–3Al beta Ti alloy during hot compressive deformation. Mater Sci Eng A. 2016;665:154.CrossRef Abbasi SM, Momeni A, Lin YC, Jafarian HR. Dynamic softening mechanism in Ti–13V–11Cr–3Al beta Ti alloy during hot compressive deformation. Mater Sci Eng A. 2016;665:154.CrossRef
[22]
go back to reference Li XF, Huang X, Huang LJ, Sha AX. Deformation behavior of hot compression for TC27 titanium alloy. Rare Met Mater Eng. 2016;45(3):793.CrossRef Li XF, Huang X, Huang LJ, Sha AX. Deformation behavior of hot compression for TC27 titanium alloy. Rare Met Mater Eng. 2016;45(3):793.CrossRef
[23]
go back to reference Bobbili R, Ramudu BV, Madhu V. A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy. J Alloys Compd. 2017;696:295.CrossRef Bobbili R, Ramudu BV, Madhu V. A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy. J Alloys Compd. 2017;696:295.CrossRef
[24]
go back to reference Pilehva F, Zarei-Hanzaki A, Ghambari M, Abedi HR. Flow behavior modeling of a Ti–6Al–7Nb biomedical alloy during manufacturing at elevated temperatures. Mater Des. 2013;51(5):457.CrossRef Pilehva F, Zarei-Hanzaki A, Ghambari M, Abedi HR. Flow behavior modeling of a Ti–6Al–7Nb biomedical alloy during manufacturing at elevated temperatures. Mater Des. 2013;51(5):457.CrossRef
[25]
go back to reference Ma X, Zeng WD, Xu B, Sun Y, Xue C, Han YF. Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterion. Intermetallics. 2012;20(1):1.CrossRef Ma X, Zeng WD, Xu B, Sun Y, Xue C, Han YF. Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterion. Intermetallics. 2012;20(1):1.CrossRef
[26]
go back to reference Wang B, Huang LJ, Geng L, Rong XD. Compressive behaviors and mechanisms of TiB whiskers reinforced high temperature Ti60 alloy matrix composites. Mater Sci Eng A. 2015;648:443.CrossRef Wang B, Huang LJ, Geng L, Rong XD. Compressive behaviors and mechanisms of TiB whiskers reinforced high temperature Ti60 alloy matrix composites. Mater Sci Eng A. 2015;648:443.CrossRef
[27]
go back to reference Li JB, Liu Y, Liu B, Wang Y, Zhao K, He YH. Effect of Nb particles on the flow behavior of TiAl alloy. Intermetallics. 2014;44:22.CrossRef Li JB, Liu Y, Liu B, Wang Y, Zhao K, He YH. Effect of Nb particles on the flow behavior of TiAl alloy. Intermetallics. 2014;44:22.CrossRef
[28]
go back to reference Bai XF, Zhao YQ, Zeng WD, Jia ZQ, Zhang YS. Characterization of hot deformation behavior of a biomedical titanium alloy TLM. Mater Sci Eng A. 2014;598:236.CrossRef Bai XF, Zhao YQ, Zeng WD, Jia ZQ, Zhang YS. Characterization of hot deformation behavior of a biomedical titanium alloy TLM. Mater Sci Eng A. 2014;598:236.CrossRef
[29]
go back to reference Jiang SY, Zhang YQ, Zhao YN. Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation. Trans Nonferrous Met Soc China. 2013;23(1):140.CrossRef Jiang SY, Zhang YQ, Zhao YN. Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation. Trans Nonferrous Met Soc China. 2013;23(1):140.CrossRef
[30]
go back to reference Liu N, Li Z, Xu WY, Wang Y, Zhang GQ, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(2):86.CrossRef Liu N, Li Z, Xu WY, Wang Y, Zhang GQ, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(2):86.CrossRef
Metadata
Title
High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy
Authors
Wen-Tao Qu
Xu-Guang Sun
Song-Xiao Hui
Zhen-Guo Wang
Yan Li
Publication date
13-02-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2018
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-0999-9

Other articles of this Issue 3/2018

Rare Metals 3/2018 Go to the issue

Premium Partners