Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 4/2019

11-06-2019

High-Temperature Interactions Between Vanadium-Titanium Magnetite Carbon Composite Hot Briquettes and Pellets Under Simulated Blast Furnace Conditions

Authors: Wei Zhao, Mansheng Chu, Zhenggen Liu, Hongtao Wang, Jue Tang, Ziwei Ying

Published in: Metallurgical and Materials Transactions B | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high-temperature interactions between vanadium-titanium magnetite carbon composite hot briquettes (VTM-CCBs) and pellets were systematically investigated under simulated blast furnace conditions with respect to the reduction behavior, softening–melting–dripping characteristics, gas permeability, and Ti(C, N) precipitation mechanisms. The results showed that VTM-CCB charging can promote the reduction of the pellet in the packed bed and decrease the compressive strength of the pellet after reduction. The compressive strength of the VTM-CCB after reduction decreased with increasing temperature when the FC/O ratio (the ratio of the fixed carbon mol(C) in coal to the reducible oxygen mol(O) in iron oxides) was higher than 1.0. With an FC/O ratio lower than 1.0, the compressive strength of the VTM-CCB initially decreased and then increased. The FC/O ratio has a significant influence on the softening–melting interaction mechanism between the VTM-CCB and the pellet. With an FC/O ratio of 0.8, the bonding layer at the interface between the pellet and the VTM-CCB (consisting of molten fayalitic slag) can promote the softening process, thereby decreasing the softening start and end temperatures. By increasing the FC/O ratio to 1.4, a dense metallic iron shell with relatively high strength formed at the interface and restricted the collapse of the packed bed, thereby increasing the softening start and end temperatures and ensuring the transport of the reduction gas through the packed bed. The melting point of the primary slag phase increased with increasing FC/O ratio due to a decrease in the FeO content, which resulted in an increase in the melting start temperature from 1273 °C to 1294 °C (1546 K to 1567 K). The gas permeability in the cohesive zone increased with an increasing FC/O ratio of the VTM-CCB due to a combination of the skeletal role performed by the residual VTM-CCB and the decrease in the liquid slag proportion. In addition, as the FC/O ratio increased to 1.4, unconsumed carbon promoted the precipitation of Ti(C, N) at the slag–carbon and slag–metal interfaces, which resulted in a substantial increase in the dripping temperature and deterioration of the dripping behavior of the packed bed. Therefore, to suppress the precipitation of Ti(C, N) and improve the dripping behavior of the packed bed, the FC/O ratio of the charged VTM-CCB should be controlled within an appropriate range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference [1] T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun and G.B. Qiu: Metall. Mater. Trans. B, 2013, vol. 44, pp. 252-60.CrossRef [1] T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun and G.B. Qiu: Metall. Mater. Trans. B, 2013, vol. 44, pp. 252-60.CrossRef
2.
3.
go back to reference [3] Z.G. Hao, H.G. Fei, L. Liu and T. Susan: Acta Geologica Sinica, 2012, vol. 87, pp. 286-87. [3] Z.G. Hao, H.G. Fei, L. Liu and T. Susan: Acta Geologica Sinica, 2012, vol. 87, pp. 286-87.
4.
go back to reference [4] H.G. Du: Principle of Blast Furnace Smelting Vanadium-Titanium Magnetite, Science Press, Beijing, 1996, pp. 1-10. [4] H.G. Du: Principle of Blast Furnace Smelting Vanadium-Titanium Magnetite, Science Press, Beijing, 1996, pp. 1-10.
5.
6.
go back to reference [6] T. Anyashiki, K. Fukada and H. Fujimoto: JFE Technical Report, 2009, vol. 13, pp. 1-6. [6] T. Anyashiki, K. Fukada and H. Fujimoto: JFE Technical Report, 2009, vol. 13, pp. 1-6.
7.
8.
go back to reference [8] Y. Tanaka, T. Ueno, K. Okumura and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1240-46.CrossRef [8] Y. Tanaka, T. Ueno, K. Okumura and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1240-46.CrossRef
9.
go back to reference [9] Y. Matsui, M. Sawayama, A. Kasai, Y. Yamagata and F. Noma: ISIJ Int., 2003, vol. 43, pp.1904-12.CrossRef [9] Y. Matsui, M. Sawayama, A. Kasai, Y. Yamagata and F. Noma: ISIJ Int., 2003, vol. 43, pp.1904-12.CrossRef
10.
11.
go back to reference [11] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying and J. Tang: Steel Res. Int., 2017, vol. 88, pp. 1-9. [11] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying and J. Tang: Steel Res. Int., 2017, vol. 88, pp. 1-9.
12.
go back to reference [12] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, and J. Tang: JOM, 2017, vol. 69, pp. 1737-44.CrossRef [12] W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, and J. Tang: JOM, 2017, vol. 69, pp. 1737-44.CrossRef
13.
go back to reference [13] W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying: ISIJ Int., 2018, vol. 58, 823-32.CrossRef [13] W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying: ISIJ Int., 2018, vol. 58, 823-32.CrossRef
14.
go back to reference [14] X.L. Liu, S.L. Wu, W. Huang, K.F. Zhang, and K.P. Du: ISIJ Int., 2014, vol. 54, 2089-96.CrossRef [14] X.L. Liu, S.L. Wu, W. Huang, K.F. Zhang, and K.P. Du: ISIJ Int., 2014, vol. 54, 2089-96.CrossRef
15.
go back to reference [15] S.L. Wu, H.L. Han, H.F. Xu, H.W. Wang, and X.Q. Liu: ISIJ Int., 2010, vol. 50, 686-94.CrossRef [15] S.L. Wu, H.L. Han, H.F. Xu, H.W. Wang, and X.Q. Liu: ISIJ Int., 2010, vol. 50, 686-94.CrossRef
16.
go back to reference [16] X.F. She, J.S. Wang, J.Z. Liu, X.X. Zhang, and Q.G. Xue: ISIJ Int., 2014, vol. 54, 2728-36.CrossRef [16] X.F. She, J.S. Wang, J.Z. Liu, X.X. Zhang, and Q.G. Xue: ISIJ Int., 2014, vol. 54, 2728-36.CrossRef
17.
go back to reference [17] P. Kaushik and R. J. Fruehan: Ironmaking & Steelmaking, 2007, vol. 34, 10-22.CrossRef [17] P. Kaushik and R. J. Fruehan: Ironmaking & Steelmaking, 2007, vol. 34, 10-22.CrossRef
18.
19.
20.
21.
go back to reference [23] G. J. Cheng, X. X. Xue, T. Jiang and P. N. Duan: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1713-26.CrossRef [23] G. J. Cheng, X. X. Xue, T. Jiang and P. N. Duan: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1713-26.CrossRef
22.
go back to reference [21] X. Z. Zhang, Principles of Transfer in Metallurgy, Metallurgy Industry Press, Beijing, 2005, pp. 386-90. [21] X. Z. Zhang, Principles of Transfer in Metallurgy, Metallurgy Industry Press, Beijing, 2005, pp. 386-90.
23.
go back to reference [22] S.L. Wu, B.Y. Tuo, L.H. Zhang, K.P. Du, and Y. Sun: Steel Res. Int., 2014, vol. 85, pp. 233-42.CrossRef [22] S.L. Wu, B.Y. Tuo, L.H. Zhang, K.P. Du, and Y. Sun: Steel Res. Int., 2014, vol. 85, pp. 233-42.CrossRef
24.
26.
go back to reference [26] G. Eriksson, A.D. Pelton, E. Woermann, and A. Ender: Cheminform, 1997, vol. 100, pp. 1839-49. [26] G. Eriksson, A.D. Pelton, E. Woermann, and A. Ender: Cheminform, 1997, vol. 100, pp. 1839-49.
27.
go back to reference [27] K. Hu, X.W. Lv, S.P. Li, W. Lv, B. Song, and K.X. Han: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1963-73.CrossRef [27] K. Hu, X.W. Lv, S.P. Li, W. Lv, B. Song, and K.X. Han: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1963-73.CrossRef
28.
go back to reference [28] G.H. Zhang, Y.L. Zhen, and K.C. Chou: ISIJ Int., 2015, vol. 55, 922-27.CrossRef [28] G.H. Zhang, Y.L. Zhen, and K.C. Chou: ISIJ Int., 2015, vol. 55, 922-27.CrossRef
29.
go back to reference [29] Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46, 155-61.CrossRef [29] Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46, 155-61.CrossRef
30.
go back to reference [30] H. Park, J.Y. Park, G.H. Kim, Il Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-56.CrossRef [30] H. Park, J.Y. Park, G.H. Kim, Il Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-56.CrossRef
31.
go back to reference [34] H.G. Du: Principle of Smelting Vanadium-Titanium Magnetite in the Blast Furnace, 1st ed., Science Press, Beijing, 1996, p. 58. [34] H.G. Du: Principle of Smelting Vanadium-Titanium Magnetite in the Blast Furnace, 1st ed., Science Press, Beijing, 1996, p. 58.
32.
go back to reference [31] N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-16.CrossRef [31] N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509-16.CrossRef
33.
go back to reference Shankar A, Görnerup M, Lahiri AK, Seetharaman S (2007) Metall Mater Trans B 38B:911-915CrossRef Shankar A, Görnerup M, Lahiri AK, Seetharaman S (2007) Metall Mater Trans B 38B:911-915CrossRef
34.
go back to reference Sohn I, Wang WL, Matsuura H, Tsukihashi F, Min DJ (2012) ISIJ Int 52:158-160CrossRef Sohn I, Wang WL, Matsuura H, Tsukihashi F, Min DJ (2012) ISIJ Int 52:158-160CrossRef
Metadata
Title
High-Temperature Interactions Between Vanadium-Titanium Magnetite Carbon Composite Hot Briquettes and Pellets Under Simulated Blast Furnace Conditions
Authors
Wei Zhao
Mansheng Chu
Zhenggen Liu
Hongtao Wang
Jue Tang
Ziwei Ying
Publication date
11-06-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 4/2019
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-019-01616-x

Other articles of this Issue 4/2019

Metallurgical and Materials Transactions B 4/2019 Go to the issue

Premium Partners