Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2015

26-06-2015

High temperature measurement and characterisation of piezoelectric properties

Authors: P. M. Weaver, T. Stevenson, T. Quast, G. Bartl, T. Schmitz-Kempen, P. Woolliams, A. Blumfield, M. Stewart, M. G. Cain

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently available high performance piezoelectric materials, predominantly based on lead zirconate titanate (PZT), are typically limited to operating temperatures of around 200 °C or below. There are many applications in sectors such as automotive, aerospace, power generation and process control, oil and gas, where reliable operation at higher temperatures is required for sensors, actuators and transducers. New materials are being actively developed to meet this need. Development and application of new and existing materials requires reliable measurement of their properties under these challenging conditions. This paper reviews the current state of the art in measurement of piezoelectric properties at high temperature, including direct and converse piezoelectric measurements and resonance techniques applied to high temperature measurements. New results are also presented on measurement of piezoelectric and thermal expansion and the effects of sample distortion on piezoelectric measurements. An investigation of the applicability of resonance measurements at high temperature is presented, and comparisons are drawn between the results of the different measurement techniques. New results on piezoelectric resonance measurements on novel high temperature piezoelectric materials, and conventional PZT materials, at temperatures up to 600 °C are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.M. Weaver, A sensorless drive system for controlling temperature-dependent hysteresis in piezoelectric actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(4), 704–710 (2011)CrossRef P.M. Weaver, A sensorless drive system for controlling temperature-dependent hysteresis in piezoelectric actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(4), 704–710 (2011)CrossRef
2.
go back to reference P.M. Weaver, M.G. Cain, M. Stewart, Temperature dependence of strain–polarization coupling in ferroelectric ceramics. Appl. Phys. Lett. 96(14), 142905 (2010)CrossRef P.M. Weaver, M.G. Cain, M. Stewart, Temperature dependence of strain–polarization coupling in ferroelectric ceramics. Appl. Phys. Lett. 96(14), 142905 (2010)CrossRef
3.
go back to reference P.M. Weaver, M.G. Cain, M. Stewart, Temperature dependence of high field electromechanical coupling in ferroelectric ceramics. J. Phys. D Appl. Phys. 43(16), 165404 (2010)CrossRef P.M. Weaver, M.G. Cain, M. Stewart, Temperature dependence of high field electromechanical coupling in ferroelectric ceramics. J. Phys. D Appl. Phys. 43(16), 165404 (2010)CrossRef
4.
go back to reference W.R. Cook, D.A. Berlincourt, F.J. Scholz, Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate. J. Appl. Phys. 34(5), 1392–1398 (1963)CrossRef W.R. Cook, D.A. Berlincourt, F.J. Scholz, Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate. J. Appl. Phys. 34(5), 1392–1398 (1963)CrossRef
5.
go back to reference S. Kallaev, G. Gadzhiev, I. Kamilov, Z. Ornarov, S. Sadykov, L. Reznichenko, Thermal properties of PZT-based ferroelectric ceramics. Phys. Solid State 48(6), 1169–1170 (2006)CrossRef S. Kallaev, G. Gadzhiev, I. Kamilov, Z. Ornarov, S. Sadykov, L. Reznichenko, Thermal properties of PZT-based ferroelectric ceramics. Phys. Solid State 48(6), 1169–1170 (2006)CrossRef
6.
go back to reference M. Budimir, A. Mohimi, C. Selcuk, T.-H. Gan, High temperature nde ultrasound transducers for condition monitoring of superheated steam pipes in nuclear power plants. In Proceedings of the International Conference Nuclear Energy for New Europe, Bovec, Slovenia (2011) M. Budimir, A. Mohimi, C. Selcuk, T.-H. Gan, High temperature nde ultrasound transducers for condition monitoring of superheated steam pipes in nuclear power plants. In Proceedings of the International Conference Nuclear Energy for New Europe, Bovec, Slovenia (2011)
7.
go back to reference D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3(5), 469–473 (1998)CrossRef D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3(5), 469–473 (1998)CrossRef
8.
go back to reference M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977) M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)
9.
go back to reference B. Nagaraj, S. Aggarwal, T. Song, T. Sawhney, R. Ramesh, Leakage current mechanisms in lead-based thin-film ferroelectric capacitors. Phys. Rev. B 59(24), 16022–16027 (1999)CrossRef B. Nagaraj, S. Aggarwal, T. Song, T. Sawhney, R. Ramesh, Leakage current mechanisms in lead-based thin-film ferroelectric capacitors. Phys. Rev. B 59(24), 16022–16027 (1999)CrossRef
10.
go back to reference B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971) B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)
11.
go back to reference M. Stewart, M.G. Cain, Measurement and modelling of self-heating in piezoelectric materials and devices, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 147–189 M. Stewart, M.G. Cain, Measurement and modelling of self-heating in piezoelectric materials and devices, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 147–189
12.
go back to reference S. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59(27), 3471–3475 (2005)CrossRef S. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59(27), 3471–3475 (2005)CrossRef
13.
go back to reference M. Stewart, M. Cain, Direct piezoelectric measurement: the Berlincourt method, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 37–64 M. Stewart, M. Cain, Direct piezoelectric measurement: the Berlincourt method, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 37–64
14.
go back to reference D. Damjanovic, Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82(4), 1788–1797 (1997)CrossRef D. Damjanovic, Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82(4), 1788–1797 (1997)CrossRef
15.
go back to reference A. Barzegar, D. Damjanovic, N. Setter, The effect of boundary conditions and sample aspect ratio on apparent d/sub 33/piezoelectric coefficient determined by direct quasistatic method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 262–270 (2004) A. Barzegar, D. Damjanovic, N. Setter, The effect of boundary conditions and sample aspect ratio on apparent d/sub 33/piezoelectric coefficient determined by direct quasistatic method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(3), 262–270 (2004)
16.
go back to reference M. Davis, D. Damjanovic, N. Setter, Temperature dependence of the direct piezoelectric effect in relaxor-ferroelectric single crystals: intrinsic and extrinsic contributions. J. Appl. Phys. 100(8), 084103 (2006)CrossRef M. Davis, D. Damjanovic, N. Setter, Temperature dependence of the direct piezoelectric effect in relaxor-ferroelectric single crystals: intrinsic and extrinsic contributions. J. Appl. Phys. 100(8), 084103 (2006)CrossRef
17.
go back to reference M. Cain, M. Stewart, Piezoelectric resonance, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 15–36 M. Cain, M. Stewart, Piezoelectric resonance, in Characterisation of Ferroelectric Bulk Materials and Thin Films, ed. by M.G. Cain (Springer, Netherlands, 2014), pp. 15–36
18.
go back to reference CENELEC EN 50324-2:2002 Piezoelectric Properties of Ceramic Materials and Components—Part 2: Methods of Measurement and Properties—Low Power. CENELEC (2002) CENELEC EN 50324-2:2002 Piezoelectric Properties of Ceramic Materials and ComponentsPart 2: Methods of Measurement and PropertiesLow Power. CENELEC (2002)
19.
go back to reference Publication and proposed revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE standard on piezoelectricity”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(5), 717 (1996) Publication and proposed revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE standard on piezoelectricity”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(5), 717 (1996)
20.
go back to reference J. Wooldridge, S. Ryding, S. Brown, T.L. Burnett, M.G. Cain, R. Cernik, R. Hino, M. Stewart, P. Thompson, Simultaneous measurement of X-ray diffraction and ferroelectric polarization data as a function of applied electric field and frequency. J. Synchrotron Radiat. 19(5), 710–716 (2012)CrossRef J. Wooldridge, S. Ryding, S. Brown, T.L. Burnett, M.G. Cain, R. Cernik, R. Hino, M. Stewart, P. Thompson, Simultaneous measurement of X-ray diffraction and ferroelectric polarization data as a function of applied electric field and frequency. J. Synchrotron Radiat. 19(5), 710–716 (2012)CrossRef
21.
go back to reference A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, J.L. Jones, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94(2), 293–309 (2011)CrossRef A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, J.L. Jones, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94(2), 293–309 (2011)CrossRef
22.
go back to reference J. Jones, M. Hoffman, J. Daniels, A. Studer, Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89(9), 092901 (2006)CrossRef J. Jones, M. Hoffman, J. Daniels, A. Studer, Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89(9), 092901 (2006)CrossRef
23.
go back to reference T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, J. Roedel, Temperature dependence of the piezoelectric coefficient in BiMeO3–PbTiO3 (Me= Fe, Sc, (Mg1/2Ti1/2)) ceramics. J. Am. Ceram. Soc. 95(2), 711–715 (2012)CrossRef T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, J. Roedel, Temperature dependence of the piezoelectric coefficient in BiMeO3–PbTiO3 (Me= Fe, Sc, (Mg1/2Ti1/2)) ceramics. J. Am. Ceram. Soc. 95(2), 711–715 (2012)CrossRef
24.
go back to reference K.G. Webber, E. Aulbach, J. Rödel, High temperature blocking force measurements of soft lead zirconate titanate. J. Phys. D Appl. Phys. 43, 365401 (2010)CrossRef K.G. Webber, E. Aulbach, J. Rödel, High temperature blocking force measurements of soft lead zirconate titanate. J. Phys. D Appl. Phys. 43, 365401 (2010)CrossRef
25.
go back to reference S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, S. Tiedke, Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry. Appl. Phys. Lett. 103(13), 132904 (2013)CrossRef S. Sivaramakrishnan, P. Mardilovich, A. Mason, A. Roelofs, T. Schmitz-Kempen, S. Tiedke, Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry. Appl. Phys. Lett. 103(13), 132904 (2013)CrossRef
26.
go back to reference L. Burianova, A. Kopal, J. Nosek, Characterization of advanced piezoelectric materials in the wide temperature range. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 99(1–3), 187–191 (2003)CrossRef L. Burianova, A. Kopal, J. Nosek, Characterization of advanced piezoelectric materials in the wide temperature range. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 99(1–3), 187–191 (2003)CrossRef
27.
go back to reference A. Wolff, Large signal resonance and laser dilatometer methods, in Piezoelectricity, vol. 114, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer, Berlin Heidelberg, 2008), pp. 445–455CrossRef A. Wolff, Large signal resonance and laser dilatometer methods, in Piezoelectricity, vol. 114, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer, Berlin Heidelberg, 2008), pp. 445–455CrossRef
28.
go back to reference K.M. Rittenmyer, P.S. Dubbelday, Direct measurement of the temperature-dependent piezoelectric coefficients of composite materials by laser Doppler vibrometry. J. Acoust. Soc. Am. 91(4), 2254–2260 (1992)CrossRef K.M. Rittenmyer, P.S. Dubbelday, Direct measurement of the temperature-dependent piezoelectric coefficients of composite materials by laser Doppler vibrometry. J. Acoust. Soc. Am. 91(4), 2254–2260 (1992)CrossRef
29.
go back to reference R. Holland, Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans. Sonics Ultrason. 14(1), 18–20 (1967)CrossRef R. Holland, Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans. Sonics Ultrason. 14(1), 18–20 (1967)CrossRef
30.
go back to reference J.G. Smits, Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics. IEEE Trans. Sonics Ultrason. 23(6), 393–401 (1976)CrossRef J.G. Smits, Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics. IEEE Trans. Sonics Ultrason. 23(6), 393–401 (1976)CrossRef
31.
go back to reference S. Sherrit, Non-iterative evaluation of the real and imaginary material constants of piezoelectric resonators. Ferroelectrics 134, 111–119 (1992)CrossRef S. Sherrit, Non-iterative evaluation of the real and imaginary material constants of piezoelectric resonators. Ferroelectrics 134, 111–119 (1992)CrossRef
32.
go back to reference C. Alemany, A. Gonzalez, L. Pardo, B. Jiménez, F. Carmona, J. Mendiola, Automatic determination of complex constants of piezoelectric lossy materials in the radial mode. J. Phys. D Appl. Phys. 28(5), 945 (1995)CrossRef C. Alemany, A. Gonzalez, L. Pardo, B. Jiménez, F. Carmona, J. Mendiola, Automatic determination of complex constants of piezoelectric lossy materials in the radial mode. J. Phys. D Appl. Phys. 28(5), 945 (1995)CrossRef
33.
go back to reference C. Alemany, L. Pardo, B. Jimenez, F. Carmona, J. Mendiola, A. Gonzalez, Automatic iterative evaluation of complex material constants in piezoelectric ceramics. J. Phys. D Appl. Phys. 27(1), 148 (1994)CrossRef C. Alemany, L. Pardo, B. Jimenez, F. Carmona, J. Mendiola, A. Gonzalez, Automatic iterative evaluation of complex material constants in piezoelectric ceramics. J. Phys. D Appl. Phys. 27(1), 148 (1994)CrossRef
34.
go back to reference K.W. Kwok, H.L.W. Chan, C.L. Choy, Evaluation of the material parameters of piezoelectric materials by various methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 733–742 (1997)CrossRef K.W. Kwok, H.L.W. Chan, C.L. Choy, Evaluation of the material parameters of piezoelectric materials by various methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 733–742 (1997)CrossRef
35.
go back to reference F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, T.R. Shrout, Temperature independent shear piezoelectric response in relaxor-PbTiO[sub 3] based crystals. Appl. Phys. Lett. 97(25), 252903 (2010)CrossRef F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, T.R. Shrout, Temperature independent shear piezoelectric response in relaxor-PbTiO[sub 3] based crystals. Appl. Phys. Lett. 97(25), 252903 (2010)CrossRef
36.
go back to reference S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, Resonance analysis of high-temperature piezoelectric materials for actuation and sensing. Smart Struct. Mater. 411 (2004) S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, Resonance analysis of high-temperature piezoelectric materials for actuation and sensing. Smart Struct. Mater. 411 (2004)
37.
go back to reference L. Pardo, L. Duran-Martín, J. Mercurio, L. Nibou, B. Jiménez, Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbO3–NaNbO3. J. Phys. Chem. Solids 58(9), 1335 (1997)CrossRef L. Pardo, L. Duran-Martín, J. Mercurio, L. Nibou, B. Jiménez, Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbO3–NaNbO3. J. Phys. Chem. Solids 58(9), 1335 (1997)CrossRef
38.
go back to reference S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, T.R. Shrout, Characterization of high temperature piezoelectric crystals with an ordered langasite structure. J. Appl. Phys. 105(11), 114107 (2009)CrossRef S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, T.R. Shrout, Characterization of high temperature piezoelectric crystals with an ordered langasite structure. J. Appl. Phys. 105(11), 114107 (2009)CrossRef
39.
go back to reference S. Zhang, Y. Fei, B.H.T. Chai, E. Frantz, D.W. Snyder, X. Jiang, T.R. Shrout, Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications. Appl. Phys. Lett. 92(20), 202905 (2008)CrossRef S. Zhang, Y. Fei, B.H.T. Chai, E. Frantz, D.W. Snyder, X. Jiang, T.R. Shrout, Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications. Appl. Phys. Lett. 92(20), 202905 (2008)CrossRef
40.
go back to reference F. Yu, S. Zhang, X. Zhao, D. Yuan, L. Qin, Q.-M. Wang, T.R. Shrout, Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(4), 868–873 (2011)CrossRef F. Yu, S. Zhang, X. Zhao, D. Yuan, L. Qin, Q.-M. Wang, T.R. Shrout, Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(4), 868–873 (2011)CrossRef
41.
go back to reference H. Fritze, High temperature piezoelectric materials: defect chemistry and electro-mechanical properties. J. Electroceram. 17(2), 625–630 (2006)CrossRef H. Fritze, High temperature piezoelectric materials: defect chemistry and electro-mechanical properties. J. Electroceram. 17(2), 625–630 (2006)CrossRef
42.
go back to reference H. Fritze, High-temperature piezoelectric crystals and devices. J. Electroceram. 26(1–4), 122–161 (2011)CrossRef H. Fritze, High-temperature piezoelectric crystals and devices. J. Electroceram. 26(1–4), 122–161 (2011)CrossRef
43.
go back to reference S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94(10), 3153–3170 (2011)CrossRef S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94(10), 3153–3170 (2011)CrossRef
44.
go back to reference J. Bennett, T.R. Shrout, S.J. Zhang, P. Mandal, A.J. Bell, T.J. Stevenson, T.P. Comyn, Temperature dependence of the intrinsic and extrinsic contributions in BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 116(9), 094102 (2014)CrossRef J. Bennett, T.R. Shrout, S.J. Zhang, P. Mandal, A.J. Bell, T.J. Stevenson, T.P. Comyn, Temperature dependence of the intrinsic and extrinsic contributions in BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 116(9), 094102 (2014)CrossRef
45.
go back to reference P.M. Weaver, C. Baldauf, T.J. Stevenson, T. Quast, G. Bartl, T. Schmitz-Kempen, M. Cain, M. Stewart, High temperature piezoelectric actuators—materials and measurement. In Proceedings Actuator 2014, Bremen, Germany, pp. 60–63 (2014) P.M. Weaver, C. Baldauf, T.J. Stevenson, T. Quast, G. Bartl, T. Schmitz-Kempen, M. Cain, M. Stewart, High temperature piezoelectric actuators—materials and measurement. In Proceedings Actuator 2014, Bremen, Germany, pp. 60–63 (2014)
46.
go back to reference T. Stevenson, T. Quast, G. Bartl, T. Schmitz-Kempen, P. Weaver, Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(1), 88–96 (2015)CrossRef T. Stevenson, T. Quast, G. Bartl, T. Schmitz-Kempen, P. Weaver, Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(1), 88–96 (2015)CrossRef
47.
go back to reference T. Stevenson, D. Martin, P. Cowin, A. Blumfield, A. Bell, T. Comyn, P. Weaver, Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. (2015) (in press) T. Stevenson, D. Martin, P. Cowin, A. Blumfield, A. Bell, T. Comyn, P. Weaver, Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. (2015) (in press)
48.
go back to reference T. Comyn, T. Stevenson, A. Bell, Piezoelectric properties of BiFeO3–PbTiO3 ceramics. J. Phys. IV Proc. 128, 13–17 (2005) T. Comyn, T. Stevenson, A. Bell, Piezoelectric properties of BiFeO3–PbTiO3 ceramics. J. Phys. IV Proc. 128, 13–17 (2005)
49.
go back to reference J. Bennett, A. Bell, T. Stevenson, T. Comyn, Tailoring the structure and piezoelectric properties of BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 ceramics for high temperature applications. Appl. Phys. Lett. 103(15), 152901 (2013)CrossRef J. Bennett, A. Bell, T. Stevenson, T. Comyn, Tailoring the structure and piezoelectric properties of BiFeO3–(K0.5Bi0.5)TiO3–PbTiO3 ceramics for high temperature applications. Appl. Phys. Lett. 103(15), 152901 (2013)CrossRef
50.
go back to reference W. Wersing, Small signal resonance methods, in Piezoelectricity: Evolution and Future of a Technology, vol. 114, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer-Verlag, Berlin Heidelberg, 2008), pp.423--444CrossRef W. Wersing, Small signal resonance methods, in Piezoelectricity: Evolution and Future of a Technology, vol. 114, ed. by W. Heywang, K. Lubitz, W. Wersing (Springer-Verlag, Berlin Heidelberg, 2008), pp.423--444CrossRef
51.
go back to reference A. Yacoot, M.J. Downs, The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer. Meas. Sci. Technol. 11(8), 1126 (2000)CrossRef A. Yacoot, M.J. Downs, The use of x-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer. Meas. Sci. Technol. 11(8), 1126 (2000)CrossRef
52.
go back to reference CEN EN 821-1:1995 Advanced Technical Ceramics. Monolithic Ceramics. Thermo-Physical Properties. Determination of Thermal Expansion. CEN (1995) CEN EN 821-1:1995 Advanced Technical Ceramics. Monolithic Ceramics. Thermo-Physical Properties. Determination of Thermal Expansion. CEN (1995)
53.
go back to reference T.P. Comyn, T. Stevenson, M. Al-Jawad, G. André, A.J. Bell, R. Cywinski, Antiferromagnetic order in tetragonal bismuth ferrite–lead titanate. J. Magn. Magn. Mater. 323(21), 2533–2535 (2011)CrossRef T.P. Comyn, T. Stevenson, M. Al-Jawad, G. André, A.J. Bell, R. Cywinski, Antiferromagnetic order in tetragonal bismuth ferrite–lead titanate. J. Magn. Magn. Mater. 323(21), 2533–2535 (2011)CrossRef
54.
go back to reference R. Schödel, A. Walkov, M. Zenker, G. Bartl, R. Meeß, D. Hagedorn, C. Gaiser, G. Thummes, S. Heltzel, A new ultra precision interferometer for absolute length measurements down to cryogenic temperatures. Meas. Sci. Technol. 23(9), 094004 (2012)CrossRef R. Schödel, A. Walkov, M. Zenker, G. Bartl, R. Meeß, D. Hagedorn, C. Gaiser, G. Thummes, S. Heltzel, A new ultra precision interferometer for absolute length measurements down to cryogenic temperatures. Meas. Sci. Technol. 23(9), 094004 (2012)CrossRef
Metadata
Title
High temperature measurement and characterisation of piezoelectric properties
Authors
P. M. Weaver
T. Stevenson
T. Quast
G. Bartl
T. Schmitz-Kempen
P. Woolliams
A. Blumfield
M. Stewart
M. G. Cain
Publication date
26-06-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3285-8

Other articles of this Issue 12/2015

Journal of Materials Science: Materials in Electronics 12/2015 Go to the issue