Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

High Temperature Polymer Nanocomposites

Authors : K. Balasubramanian, Manoj Tirumalai

Published in: Structural Nanocomposites

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter on High Temperature Polymer Nanocomposites mainly covers the advancements made in the research on varied composite materials and their novel innovations for high temperature applications. The chapter begins with a prelude on existing polymers of thermoplastic or thermosets and also a combination of the two to exploit the dual advantage of both high temperature thermoplastics and thermosets. The polymer composites are developed and implemented for varied temperature regimes in the range of 120–250°C, 250–350°C specially suited for aerospace applications. Further research work is under progress to explore the material suitable for temperatures above 350°C. The initial section explains on the applicability of polymer composites having matrices such as either liquid crystalline polymer, cyanates, polyimides or bismaleimides which are reinforced with either the carbon, glass or aramid fibres especially continuous fibre which provides improved material and physical properties. The polymer-composites are assessed for performance of the matrices and the composites not only for their strength or stiffness but also for their resistance to cracking, minimum loss of weight, brittleness due to cross-linking and other properties that may degrade the performance of the composites over the long period of high temperature applications. This section mentions on the literature reviews having come up with research in progress on other types of resins for high temperature applications namely the oligomers such as the acetylene terminated polyimides or the norbornene terminated polyimides. The second section is concerned with the polymer-nanocomposites for high temperature applications. In this section, the role of nanofillers in the enhancement of composite properties is discussed. The various forms of nanofillers are the nanoclay, nanofibres, carbon nanotubes, Polyhedral OligoSilsesquioxanes (POSS) and nano-oxides where they reinforce polymer chain at molecular scale as against the carbon fibres of macroscopic scale seen in polymer-composites. In a nanocomposite the thermal properties depends on the filler’s nature, rate and dispersion in a matrices. The applications have been as fire retardant materials or for re-entry applications in aerospace vehicles. Research on nanofillers is still at its nascent stage that ample scope is available for exploring the potential of various nanofillers for high temperature applications and as fire retardant materials. Some polymer thermosets such as PMR-15 (Polymerization from Monomeric Reactants) are the most extensively used resin for applications where long term thermal stability is required at 300°C. This section dwells on other progress under way in the field of nanocomposites as high temperature nanocomposites. The last section presents a review on advanced materials for high temperature applications, especially applicable for the next generation aerospace vehicles. The issues concerning adhesives for joining of surfaces exposed to high temperatures, the effective role of nano-fillers for improving fracture toughness at high temperature etc. It is seen that the most promising resin for high temperatures has been the polyimides (315°C). This resin has high Tg (400°C) and other good characteristics such as good micro cracking resistance, low moisture absorption and low toxicity. There are various grades of polyimides under development. Overall, the chapter provides a glimpse on the effective developments in the field of polymer-composites and nanocomposites for high temperature applications especially for aerospace vehicle and automotives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cuppoletti, J.: Metal, ceramic and polymeric composites for various uses, ISBN 978-953-307-353-8, InTech, 20 July (2011) Cuppoletti, J.: Metal, ceramic and polymeric composites for various uses, ISBN 978-953-307-353-8, InTech, 20 July (2011)
2.
go back to reference Gan, M., et al.: Degradation of high temperature composites under thermal spike loads, Sampe Europe Conference & Exhibition Gan, M., et al.: Degradation of high temperature composites under thermal spike loads, Sampe Europe Conference & Exhibition
3.
go back to reference Dimitrienko, Y.I.: Thermomechanics of Composites under High Temperatures. Kluwer Academic Publishers, Dordrecht (1999)CrossRef Dimitrienko, Y.I.: Thermomechanics of Composites under High Temperatures. Kluwer Academic Publishers, Dordrecht (1999)CrossRef
4.
go back to reference Hoebergen, A., Holmberg, J.A.: Vacuum Infusion, ASM Handbook, vol. 21, pp. 501–515. Composite, Materials Park (OH) (2001) Hoebergen, A., Holmberg, J.A.: Vacuum Infusion, ASM Handbook, vol. 21, pp. 501–515. Composite, Materials Park (OH) (2001)
5.
go back to reference Mangalgiri, P.D.: Polymer-matrix composites for high-temperature applications. Defence Sci. J. 55(2), 175–193 (2005) Mangalgiri, P.D.: Polymer-matrix composites for high-temperature applications. Defence Sci. J. 55(2), 175–193 (2005)
6.
go back to reference Boyd, J.D., Chang, G.E.C.: Bismaleimide composites for advanced high-temperature applications. Int. SAMPE Symp. 38, 357–369 (1993) Boyd, J.D., Chang, G.E.C.: Bismaleimide composites for advanced high-temperature applications. Int. SAMPE Symp. 38, 357–369 (1993)
7.
go back to reference Manocha, L.M.: High performance carbon–carbon composites. Sadhana 28(1–2), 349–358 (2003)CrossRef Manocha, L.M.: High performance carbon–carbon composites. Sadhana 28(1–2), 349–358 (2003)CrossRef
10.
go back to reference Simos, N.: Composite materials under extreme radiation and temperature environments of the next generation nuclear reactors. www.intechopen.com (2011) Simos, N.: Composite materials under extreme radiation and temperature environments of the next generation nuclear reactors. www.​intechopen.​com (2011)
11.
go back to reference Bonal, J.-P., Kohyama, K., van der Laan, J., Snead, L.: Graphite, ceramics and ceramic composites for high-temperature nuclear power systems. MRS Bull. 34, 28–34 (2009)CrossRef Bonal, J.-P., Kohyama, K., van der Laan, J., Snead, L.: Graphite, ceramics and ceramic composites for high-temperature nuclear power systems. MRS Bull. 34, 28–34 (2009)CrossRef
12.
go back to reference Tomar, V.: Nanotechnology thought leaders series, school of aeronautics and astronautics, Purdue University (2011) Tomar, V.: Nanotechnology thought leaders series, school of aeronautics and astronautics, Purdue University (2011)
14.
go back to reference Morgan, A.B.: Polymer-clay nanocomposites: Design and application of multi-functional materials. Mater. Matters 2, 20–25 (2007) Morgan, A.B.: Polymer-clay nanocomposites: Design and application of multi-functional materials. Mater. Matters 2, 20–25 (2007)
15.
go back to reference Frank, K.: Book review: Polymer nanocomposites—processing, characterization, and applications. J. Eng. Fibers Fabr. 3(3) (2008) Frank, K.: Book review: Polymer nanocomposites—processing, characterization, and applications. J. Eng. Fibers Fabr. 3(3) (2008)
16.
go back to reference Tzeng, S.S.: Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis Mater. Chem. Phys. 73, 162–169 (2002) Tzeng, S.S.: Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis Mater. Chem. Phys. 73, 162–169 (2002)
17.
go back to reference Sambarkar, P.P., et al.: Polymer nanocomposites: An overview. Int. J. Pharm. Pharm. Sci 4(2), 60–65 (2012) Sambarkar, P.P., et al.: Polymer nanocomposites: An overview. Int. J. Pharm. Pharm. Sci 4(2), 60–65 (2012)
18.
go back to reference Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater Sci. Eng. R 28, 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater Sci. Eng. R 28, 1–63 (2000)CrossRef
19.
go back to reference Sheng, X.: Polymer nanocomposites for high-temperature composite repair, Iowa State University Digital Repository @ Iowa State University (2008) Sheng, X.: Polymer nanocomposites for high-temperature composite repair, Iowa State University Digital Repository @ Iowa State University (2008)
20.
go back to reference Kurahatti, R.V., et al.: Defence applications of polymer nanocomposites. Defence Sci. J. 60(5), 551–563 (2010)CrossRef Kurahatti, R.V., et al.: Defence applications of polymer nanocomposites. Defence Sci. J. 60(5), 551–563 (2010)CrossRef
21.
go back to reference Hussain, F., et al.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compo. Mater. 40(17), 1511–1575 (2006)CrossRef Hussain, F., et al.: Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compo. Mater. 40(17), 1511–1575 (2006)CrossRef
22.
go back to reference Takeichi, T., et al.: High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49, 1173–1179 (2008)CrossRef Takeichi, T., et al.: High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49, 1173–1179 (2008)CrossRef
23.
go back to reference Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., Ghosal, P., et al.: Nano silica modified carbon—phenolic composites for enhanced ablation resistance. Scr. Mater. 63, 200–203 (2010)CrossRef Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., Ghosal, P., et al.: Nano silica modified carbon—phenolic composites for enhanced ablation resistance. Scr. Mater. 63, 200–203 (2010)CrossRef
24.
go back to reference Marshall Space Flight Cen, Application of Ablative Composites to Nozzles for Reusable Solid Rocket Motors, practice no. Pd-ed-1218 page 1 of 8 (1989) Marshall Space Flight Cen, Application of Ablative Composites to Nozzles for Reusable Solid Rocket Motors, practice no. Pd-ed-1218 page 1 of 8 (1989)
25.
go back to reference Lao, S., Ho, W., Ngyuen, K., Koo, J.H.: Flammabiltiy, mechanical, and thermal properties of polyamide nanocomposites. In Proceedings of SAMPE 2005, Seattle, WA (2005) Lao, S., Ho, W., Ngyuen, K., Koo, J.H.: Flammabiltiy, mechanical, and thermal properties of polyamide nanocomposites. In Proceedings of SAMPE 2005, Seattle, WA (2005)
26.
go back to reference Zhang, Z., Yang, J.L.: Creep resistant polymeric nanocomposites. Polymer 45, 3481–3485 (2004)CrossRef Zhang, Z., Yang, J.L.: Creep resistant polymeric nanocomposites. Polymer 45, 3481–3485 (2004)CrossRef
27.
go back to reference Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano. Org. 5(4), 3182–3190 (2011)CrossRef Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano. Org. 5(4), 3182–3190 (2011)CrossRef
28.
go back to reference Poyato, R., et al.: Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17, 1770–1777 (2006)CrossRef Poyato, R., et al.: Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17, 1770–1777 (2006)CrossRef
29.
go back to reference Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
30.
go back to reference Tomar, V., Gan, M.: Temperature dependent nanomechanics of si-c-n nanocomposites with an account of particle clustering and grain boundaries. Submitted to. Int. J. Hydrogen Energy (2009) Tomar, V., Gan, M.: Temperature dependent nanomechanics of si-c-n nanocomposites with an account of particle clustering and grain boundaries. Submitted to. Int. J. Hydrogen Energy (2009)
31.
go back to reference Niihara, K., Izaki, K., Kawakami, T.: Hot-pressed Si3N4-32%SiC nanocomposites from amorphous Si-C-N powder with improved strength above 1,200 °C. J. Mater Sci. Lett. 10, 112–114 (1990)CrossRef Niihara, K., Izaki, K., Kawakami, T.: Hot-pressed Si3N4-32%SiC nanocomposites from amorphous Si-C-N powder with improved strength above 1,200 °C. J. Mater Sci. Lett. 10, 112–114 (1990)CrossRef
32.
go back to reference Wan, J., Duan, R.-G., Gasch, M.J., Mukherjee, A.K.: Highly creep-resistant silicon nitride/silicon carbide nano–nano composites. J. Am. Ceram. Soc. 89(1), 274–280 (2006)CrossRef Wan, J., Duan, R.-G., Gasch, M.J., Mukherjee, A.K.: Highly creep-resistant silicon nitride/silicon carbide nano–nano composites. J. Am. Ceram. Soc. 89(1), 274–280 (2006)CrossRef
33.
go back to reference Niihara, K.: New design concept for structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn: Centennial Memorial Issue 99(10), 974–982 (1991)CrossRef Niihara, K.: New design concept for structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Jpn: Centennial Memorial Issue 99(10), 974–982 (1991)CrossRef
34.
go back to reference Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33, 1509–1515 (1995)CrossRef Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33, 1509–1515 (1995)CrossRef
35.
go back to reference Chen, Y., Chen, P., Hong, C., Zhang, B., Hui, D.: Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles. Compos. B 47, 320–325 (2013)CrossRef Chen, Y., Chen, P., Hong, C., Zhang, B., Hui, D.: Improved ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles. Compos. B 47, 320–325 (2013)CrossRef
36.
go back to reference Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef
37.
go back to reference Abdalla, M.O., Ludwick, A., Mitchell, T.: Boron-modified phenolic resin for high performance application. Polymer 44, 7353–7359 (2003)CrossRef Abdalla, M.O., Ludwick, A., Mitchell, T.: Boron-modified phenolic resin for high performance application. Polymer 44, 7353–7359 (2003)CrossRef
38.
go back to reference Corral, E.L., Walker, L.S.: Improved ablation resistance of C–C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30(11), 2357–2364 (2010)CrossRef Corral, E.L., Walker, L.S.: Improved ablation resistance of C–C composites using zirconium diboride and boron carbide. J. Eur. Ceram. Soc. 30(11), 2357–2364 (2010)CrossRef
39.
go back to reference Pulci, G., Tirillò, J., Fossati, F., Bartuli, C., Valente, T.: Carbon–phenolic ablative materials for re-entry space vehicle: Manufacturing and properties. Compos. Part A: Appl. Sci. Manuf. 41(10), 1483–1490 (2010)CrossRef Pulci, G., Tirillò, J., Fossati, F., Bartuli, C., Valente, T.: Carbon–phenolic ablative materials for re-entry space vehicle: Manufacturing and properties. Compos. Part A: Appl. Sci. Manuf. 41(10), 1483–1490 (2010)CrossRef
40.
go back to reference Bahramian, A.R., et al.: High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J. Hazard. Mater. 150, 136–145 (2008)CrossRef Bahramian, A.R., et al.: High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J. Hazard. Mater. 150, 136–145 (2008)CrossRef
41.
go back to reference Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef Kashiwagi, T., Harris, R.H., Zhang, X., Briber, R.M., Cipriano, B.H., Raghavan, S.R., Awad, W.H., Shields, J.R.: Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45, 881–891 (2004)CrossRef
42.
go back to reference Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J.: Polymer/layered silicate nanocomposites as high performance ablative materials. Appl. Clay Sci. 15, 67–92 (1999)CrossRef
43.
go back to reference Collins, TJ, et al.: High-temperature structures, adhesives, and advanced thermal protection materials for next-generation Aeroshell design Collins, TJ, et al.: High-temperature structures, adhesives, and advanced thermal protection materials for next-generation Aeroshell design
44.
go back to reference Golub, M.A., Parker, J.A.: Polymeric materials for unusual service conditions. J. App. Poly. Sci., Appl. Poly. Symp. No. 22 Board (1973) Golub, M.A., Parker, J.A.: Polymeric materials for unusual service conditions. J. App. Poly. Sci., Appl. Poly. Symp. No. 22 Board (1973)
45.
go back to reference Srikanth, I., et al.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef Srikanth, I., et al.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)CrossRef
46.
go back to reference Zhang, X., Xu, L., Du, S., Han, W., Han, J.: Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scripta Mater. 59, 1222–1225 (2008)CrossRef Zhang, X., Xu, L., Du, S., Han, W., Han, J.: Crack-healing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scripta Mater. 59, 1222–1225 (2008)CrossRef
Metadata
Title
High Temperature Polymer Nanocomposites
Authors
K. Balasubramanian
Manoj Tirumalai
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40322-4_7

Premium Partners