Skip to main content
Top
Published in: Journal of Materials Science 17/2017

11-05-2017 | Composites

Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure

Authors: Xinran Zhao, Fengxiang Yin, Ning Liu, Guoru Li, Tianxi Fan, Biaohua Chen

Published in: Journal of Materials Science | Issue 17/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal–organic-frameworks (MOFs) (i.e., MOF(Fe), MOF(Co) and MOF(Cu)) were synthesized by a hydrothermal process. The prepared MOFs were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and N2 adsorption–desorption. The catalytic activities of the MOFs for the electrochemical synthesis of ammonia were evaluated when using N2 (air) and water as raw materials at low temperature and ambient pressure. The results indicated that the prepared MOFs have fine crystalline structures, abundant micropores, and large specific surface areas. The prepared MOFs showed excellent catalytic activity for the electrochemical synthesis of ammonia at low temperature and ambient pressure. Among these MOFs, the MOF(Fe) displayed the best catalytic activity, and the highest ammonia formation rate and the highest current efficiency reached 2.12 × 10−9 mol s−1 cm−2 and 1.43%, respectively, at 1.2 V and 90 °C, when using pure N2 and water as raw materials. The prepared MOFs in this work showed remarkable catalytic activities for the electrochemical synthesis of ammonia at low temperature and ambient pressure among the non-noble metal catalysts. It was the first exploration to apply MOFs as the electrocatalysts for the electrochemical synthesis of ammonia at low temperature and ambient pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282:98–100CrossRef Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282:98–100CrossRef
2.
go back to reference Liu HZ (2014) Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal 35:1619–1640CrossRef Liu HZ (2014) Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal 35:1619–1640CrossRef
3.
go back to reference Skodra A, Stoukides M (2009) Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ion 180:1332–1336CrossRef Skodra A, Stoukides M (2009) Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ion 180:1332–1336CrossRef
4.
go back to reference Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564CrossRef Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564CrossRef
5.
go back to reference Lan R, Tao S (2013) Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv 3:18016–18021CrossRef Lan R, Tao S (2013) Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv 3:18016–18021CrossRef
6.
go back to reference Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594CrossRef Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594CrossRef
7.
go back to reference Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium-dioxide. J Am Chem Soc 99:7189–7193CrossRef Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium-dioxide. J Am Chem Soc 99:7189–7193CrossRef
8.
go back to reference Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from azotobacter vinelandii. Nature 360:553–560CrossRef Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from azotobacter vinelandii. Nature 360:553–560CrossRef
9.
go back to reference Zhang ZF, Zhong ZP, Liu RQ (2010) Cathode catalysis performance of SmBaCuMO(5+δ) (M = Fe, Co, Ni) in ammonia synthesis. J Rare Earth 28:556–559CrossRef Zhang ZF, Zhong ZP, Liu RQ (2010) Cathode catalysis performance of SmBaCuMO(5+δ) (M = Fe, Co, Ni) in ammonia synthesis. J Rare Earth 28:556–559CrossRef
10.
go back to reference Wang Z, Lin J, Wang R, Wei K (2013) Ammonia synthesis over ruthenium catalyst supported on perovskite type BaTiO3. Catal Commun 32:11–14CrossRef Wang Z, Lin J, Wang R, Wei K (2013) Ammonia synthesis over ruthenium catalyst supported on perovskite type BaTiO3. Catal Commun 32:11–14CrossRef
11.
go back to reference Brewer AK, Miller RR (1931) The synthesis of ammonia in the low voltage arc. J Am Chem Soc 53:2968–2978CrossRef Brewer AK, Miller RR (1931) The synthesis of ammonia in the low voltage arc. J Am Chem Soc 53:2968–2978CrossRef
12.
go back to reference Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335CrossRef Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335CrossRef
13.
go back to reference Amar IA, Petit CTG, Mann G, Lan R, Skabara PJ, Tao S (2014) Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3-Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode. Int J Hydrog Energy 39:4322–4330CrossRef Amar IA, Petit CTG, Mann G, Lan R, Skabara PJ, Tao S (2014) Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3-Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode. Int J Hydrog Energy 39:4322–4330CrossRef
14.
go back to reference Wang WB, Cao XB, Gao WJ, Zhang F, Wang HT, Ma GL (2010) Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3−α membrane. J Membr Sci 360:397–403CrossRef Wang WB, Cao XB, Gao WJ, Zhang F, Wang HT, Ma GL (2010) Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3−α membrane. J Membr Sci 360:397–403CrossRef
15.
go back to reference Amar IA (2014) Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3−δ -Ce0.8Gd0.18Ca0.02O2−δ composite cathode. RSC Adv 4:18749–18754CrossRef Amar IA (2014) Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3−δ -Ce0.8Gd0.18Ca0.02O2−δ composite cathode. RSC Adv 4:18749–18754CrossRef
16.
go back to reference Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Stoukides M (2015) Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. Solid State Ion 275:110–116CrossRef Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Stoukides M (2015) Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. Solid State Ion 275:110–116CrossRef
17.
go back to reference You Z, Inazu K, Aika KI, Baba T (2007) Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. J Catal 251:321–331CrossRef You Z, Inazu K, Aika KI, Baba T (2007) Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. J Catal 251:321–331CrossRef
18.
go back to reference Xie YH, Wang JD, Liu RQ, Su XT, Sun ZP, Li ZJ (2004) Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure. Solid State Ion 168:117–121CrossRef Xie YH, Wang JD, Liu RQ, Su XT, Sun ZP, Li ZJ (2004) Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure. Solid State Ion 168:117–121CrossRef
19.
go back to reference Liu RQ, Xie YH, Wang JD, Li ZJ, Wang BH (2006) Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ion 177:73–76CrossRef Liu RQ, Xie YH, Wang JD, Li ZJ, Wang BH (2006) Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ion 177:73–76CrossRef
20.
go back to reference Zhang M, Xu J, Ma G (2011) Proton conduction in BaxCe0.8Y0.2O3−α + 0.04ZnO at intermediate temperatures and its application in ammonia synthesis at atmospheric pressure. J Mater Sci 46:4690–4694. doi:10.1007/s10853-011-5376-0 CrossRef Zhang M, Xu J, Ma G (2011) Proton conduction in BaxCe0.8Y0.2O3−α  + 0.04ZnO at intermediate temperatures and its application in ammonia synthesis at atmospheric pressure. J Mater Sci 46:4690–4694. doi:10.​1007/​s10853-011-5376-0 CrossRef
21.
go back to reference Cui B, Zhang J, Liu S, Liu X, Xiang W, Liu L et al (2017) Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem 19:298–304CrossRef Cui B, Zhang J, Liu S, Liu X, Xiang W, Liu L et al (2017) Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem 19:298–304CrossRef
22.
go back to reference Li FF, Licht S (2014) Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3. Inorg Chem 53:10042–10044CrossRef Li FF, Licht S (2014) Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3. Inorg Chem 53:10042–10044CrossRef
23.
go back to reference Liu HZ, Li XN, Hu ZN (1996) Development of novel low temperature and low pressure ammonia synthesis catalyst. Appl Catal A Gen 27:209–222CrossRef Liu HZ, Li XN, Hu ZN (1996) Development of novel low temperature and low pressure ammonia synthesis catalyst. Appl Catal A Gen 27:209–222CrossRef
24.
go back to reference Yiokari CG, Pitselis GE, Polydoros DG, And ADK, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602CrossRef Yiokari CG, Pitselis GE, Polydoros DG, And ADK, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602CrossRef
25.
go back to reference Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air at intermediate temperature. Appl Catal B Environ 152:212–217CrossRef Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air at intermediate temperature. Appl Catal B Environ 152:212–217CrossRef
26.
go back to reference Rod TH, Logadottir A, Nørskov JK (2000) Ammonia synthesis at low temperatures. J Chem Phys 112:5343–5347CrossRef Rod TH, Logadottir A, Nørskov JK (2000) Ammonia synthesis at low temperatures. J Chem Phys 112:5343–5347CrossRef
27.
go back to reference Köleli F, Röpke T (2006) Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl Catal. B Environ 62:306–310CrossRef Köleli F, Röpke T (2006) Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl Catal. B Environ 62:306–310CrossRef
28.
go back to reference Ertl G (1990) Elementary steps in heterogeneous catalysis. Angew Chem Int Ed 29:1219–1227CrossRef Ertl G (1990) Elementary steps in heterogeneous catalysis. Angew Chem Int Ed 29:1219–1227CrossRef
29.
go back to reference Lan R, Irvine JT, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep 3:1–7CrossRef Lan R, Irvine JT, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep 3:1–7CrossRef
30.
go back to reference Mališ J, Mazúr P, Paidar M et al (2016) Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. Int J Hydrog Energy 41:2177–2188CrossRef Mališ J, Mazúr P, Paidar M et al (2016) Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. Int J Hydrog Energy 41:2177–2188CrossRef
31.
go back to reference Inoue Y, Kitano M, Kim SW, Yokoyama T, Hara M, Hosono H (2014) Highly dispersed Ru on electride [Ca24Al28O64] 4 + (e−)4 as a catalyst for ammonia synthesis. ACS Catal 4:674–680CrossRef Inoue Y, Kitano M, Kim SW, Yokoyama T, Hara M, Hosono H (2014) Highly dispersed Ru on electride [Ca24Al28O64] 4 + (e)4 as a catalyst for ammonia synthesis. ACS Catal 4:674–680CrossRef
32.
go back to reference Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S et al (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940CrossRef Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S et al (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940CrossRef
33.
go back to reference Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY (2015) Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J Power Sources 284:245–251CrossRef Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY (2015) Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J Power Sources 284:245–251CrossRef
34.
go back to reference Hasnat MA, Karim MR, Machida M (2009) Electrocatalytic ammonia synthesis: role of cathode materials and reactor configuration. Catal Commun 10:1975–1979CrossRef Hasnat MA, Karim MR, Machida M (2009) Electrocatalytic ammonia synthesis: role of cathode materials and reactor configuration. Catal Commun 10:1975–1979CrossRef
35.
go back to reference Karolewska M, Truszkiewicz E, Wściseł M, Mierzwa B, Kępiński L, Raróg-Pilecka W (2013) Ammonia synthesis over a Ba and Ce-promoted carbon supported cobalt catalyst. Effect of the cerium addition and preparation procedure. J Catal 303:130–134CrossRef Karolewska M, Truszkiewicz E, Wściseł M, Mierzwa B, Kępiński L, Raróg-Pilecka W (2013) Ammonia synthesis over a Ba and Ce-promoted carbon supported cobalt catalyst. Effect of the cerium addition and preparation procedure. J Catal 303:130–134CrossRef
36.
go back to reference Renner JN, Greenlee LF, Ayres KE, Herring AM (2015) Electrochemical synthesis of ammonia: a low pressure, low temperature approach. Electrochem Soc Interface 24:51–57CrossRef Renner JN, Greenlee LF, Ayres KE, Herring AM (2015) Electrochemical synthesis of ammonia: a low pressure, low temperature approach. Electrochem Soc Interface 24:51–57CrossRef
37.
go back to reference Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal 1:120–127CrossRef Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal 1:120–127CrossRef
38.
go back to reference Ranft A, Betzler SB, Haase F et al (2013) Additive-mediated size control of MOF nanoparticles. CrystEngComm 15:9296–9300CrossRef Ranft A, Betzler SB, Haase F et al (2013) Additive-mediated size control of MOF nanoparticles. CrystEngComm 15:9296–9300CrossRef
39.
go back to reference Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal-organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:322–335 Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal-organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:322–335
40.
go back to reference Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Maters 209–210:151–157CrossRef Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Maters 209–210:151–157CrossRef
41.
go back to reference Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrog Energy 39:16179–16186CrossRef Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrog Energy 39:16179–16186CrossRef
42.
go back to reference Qiang RR (2006) The effect of potassium sodium tartrate solutions on ammonia standard curves. Environ Monit China 22:40–41 Qiang RR (2006) The effect of potassium sodium tartrate solutions on ammonia standard curves. Environ Monit China 22:40–41
43.
go back to reference Guo X, Xing T, Lou Y, Chen J (2015) Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem 235:107–112CrossRef Guo X, Xing T, Lou Y, Chen J (2015) Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem 235:107–112CrossRef
44.
go back to reference Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3−δ as catalyst. Electrochim Acta 123:582–587CrossRef Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3−δ as catalyst. Electrochim Acta 123:582–587CrossRef
45.
go back to reference Amar IA, Petit CTG, Zhang L, Lan R, Skabara PJ, Tao S (2011) Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ion 201:94–100CrossRef Amar IA, Petit CTG, Zhang L, Lan R, Skabara PJ, Tao S (2011) Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ion 201:94–100CrossRef
46.
go back to reference Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun 17:1673–1674CrossRef Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun 17:1673–1674CrossRef
47.
go back to reference Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Ouml E et al (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814–1817CrossRef Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Ouml E et al (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814–1817CrossRef
48.
go back to reference Leigh GJ (2002) Protonation of coordinated dinitrogen. Acc Chem Res 25:177–181CrossRef Leigh GJ (2002) Protonation of coordinated dinitrogen. Acc Chem Res 25:177–181CrossRef
49.
go back to reference Whitman LJ, Bartosch CE, Ho W, Strasser G, Grunze M (1986) Alkali-metal promotion of a dissociation precursor: N2 on Fe(111). Phys Rev Let 56:1984–1987CrossRef Whitman LJ, Bartosch CE, Ho W, Strasser G, Grunze M (1986) Alkali-metal promotion of a dissociation precursor: N2 on Fe(111). Phys Rev Let 56:1984–1987CrossRef
50.
go back to reference Aika KI (1995) Ammonia synthesis over non-iron catalysts and related phenomena. Springer, Berlin HeidelbergCrossRef Aika KI (1995) Ammonia synthesis over non-iron catalysts and related phenomena. Springer, Berlin HeidelbergCrossRef
51.
go back to reference Chen Y, Zhou Y, Wang H, Lu J, Uchida T, Xu Q et al (2015) Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal 5:2062–2069CrossRef Chen Y, Zhou Y, Wang H, Lu J, Uchida T, Xu Q et al (2015) Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal 5:2062–2069CrossRef
52.
go back to reference Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K et al (2013) Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468CrossRef Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K et al (2013) Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468CrossRef
Metadata
Title
Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure
Authors
Xinran Zhao
Fengxiang Yin
Ning Liu
Guoru Li
Tianxi Fan
Biaohua Chen
Publication date
11-05-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1176-5

Other articles of this Issue 17/2017

Journal of Materials Science 17/2017 Go to the issue

Premium Partners