Skip to main content
Top
Published in: Journal of Materials Science 17/2017

24-05-2017 | Energy materials

Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2

Authors: Jin Li, Haifeng Hu, Hanyang Li, Chengbao Yao

Published in: Journal of Materials Science | Issue 17/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development in glucose and H2O2 electrochemical sensors has significantly progressed using some original nanomaterials, such as nanoparticles and nanowires in metal, metal oxide, or carbon nanomaterials. In this review, we discussed and analyzed the mechanism, performance, and characteristics of the enzyme/nonenzyme glucose and H2O2 electrochemical sensors based on some pure metal (Au, Pd, Ni, Pt, and Cu), metal oxide (ZnO, NiO, CuO x , TiO2, and Co3O4), and carbon (nanotubes and graphene) nanomaterials. Although the introduction of nanomaterials can effectively improve the sensitivity of enzyme glucose/H2O2 sensors by enhancing the activity of protein enzyme, the enzymes are sensitive to the biochemical environment. Meanwhile, the sensing performance of nonenzyme glucose/H2O2 sensors significantly depends on the morphology, uniformity, and distribution of nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef
2.
go back to reference Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications—a review. Rev Adv Mater Sci 36:62–69 Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications—a review. Rev Adv Mater Sci 36:62–69
3.
go back to reference Karuppiah C, Velmurugan M, Chen SM, Tsai SH, Lou BS, Ali MA et al (2015) A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sens Actuat B Chem 221:1299–1306CrossRef Karuppiah C, Velmurugan M, Chen SM, Tsai SH, Lou BS, Ali MA et al (2015) A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sens Actuat B Chem 221:1299–1306CrossRef
4.
go back to reference Miao R, Mu LX, Zhang HY, She GW, Zhou BJ, Xu HT et al (2014) Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Lett 14:3124–3129CrossRef Miao R, Mu LX, Zhang HY, She GW, Zhou BJ, Xu HT et al (2014) Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Lett 14:3124–3129CrossRef
5.
go back to reference Chartuprayoon N, Zhang ML, Bosze W, Choa YH, Myung NV (2015) One-dimensional nanostructures based bio-detection. Biosens Bioelectron 63:432–443CrossRef Chartuprayoon N, Zhang ML, Bosze W, Choa YH, Myung NV (2015) One-dimensional nanostructures based bio-detection. Biosens Bioelectron 63:432–443CrossRef
6.
go back to reference Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565CrossRef Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565CrossRef
7.
go back to reference Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832CrossRef Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832CrossRef
8.
go back to reference Osman MH, Shah AA, Walsh FC (2011) Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens Bioelectron 26:3087–3102CrossRef Osman MH, Shah AA, Walsh FC (2011) Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens Bioelectron 26:3087–3102CrossRef
9.
go back to reference Bhattacharya M, Hong S, Lee D, Cui T, Goyal SM (2011) Carbon nanotube based sensors for the detection of viruses. Sens Actuat B Chem 155:67–74CrossRef Bhattacharya M, Hong S, Lee D, Cui T, Goyal SM (2011) Carbon nanotube based sensors for the detection of viruses. Sens Actuat B Chem 155:67–74CrossRef
10.
go back to reference Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV et al (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67CrossRef Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV et al (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67CrossRef
11.
go back to reference Park BW, Yoon DY, Kim DS (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron 26:1–10CrossRef Park BW, Yoon DY, Kim DS (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron 26:1–10CrossRef
12.
go back to reference Ding B, Wang MR, Wang XF, Yu JY, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27CrossRef Ding B, Wang MR, Wang XF, Yu JY, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27CrossRef
13.
go back to reference Kar P, Shankar K (2013) Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires. J Nanosci Nanotechnol 13:4473–4496CrossRef Kar P, Shankar K (2013) Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires. J Nanosci Nanotechnol 13:4473–4496CrossRef
14.
go back to reference Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593CrossRef Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593CrossRef
15.
go back to reference Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25CrossRef Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25CrossRef
16.
go back to reference Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J (2016) Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 4:148–158CrossRef Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J (2016) Diabetes and infection: assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 4:148–158CrossRef
17.
go back to reference Lv YX, Jin S, Wang Y, Lun ZQ, Xia CH (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13:1767–1776CrossRef Lv YX, Jin S, Wang Y, Lun ZQ, Xia CH (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13:1767–1776CrossRef
18.
go back to reference Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910CrossRef Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910CrossRef
19.
go back to reference Zhang RZ, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 89:249–268CrossRef Zhang RZ, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 89:249–268CrossRef
20.
go back to reference Gao XH, He SJ, Zhang CM, Du C, Chen X, Xing W, Chen SL, Clayborne A, Chen W (2016) Single crystal sub-nanometer sized Cu6 (SR) 6 clusters: structure, photophysical properties, and electrochemical sensing. Adv Sci 3:1600126CrossRef Gao XH, He SJ, Zhang CM, Du C, Chen X, Xing W, Chen SL, Clayborne A, Chen W (2016) Single crystal sub-nanometer sized Cu6 (SR) 6 clusters: structure, photophysical properties, and electrochemical sensing. Adv Sci 3:1600126CrossRef
21.
go back to reference Gao XH, Lu Y, Liu M, He S, Chen W (2015) Sub-nanometer sized Cu 6 (GSH) 3 clusters: one-step synthesis and electrochemical detection of glucose. J Mater Chem C 3:4050–4056CrossRef Gao XH, Lu Y, Liu M, He S, Chen W (2015) Sub-nanometer sized Cu 6 (GSH) 3 clusters: one-step synthesis and electrochemical detection of glucose. J Mater Chem C 3:4050–4056CrossRef
22.
go back to reference Zhang RZ, Chen W (2015) Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide. Sci Bull 60:522–531CrossRef Zhang RZ, Chen W (2015) Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide. Sci Bull 60:522–531CrossRef
23.
go back to reference Zhao MG, Huang JY, Zhou Y, Chen Q, Pan XH, He HP et al (2013) A single mesoporous ZnO/chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron 43:226–230CrossRef Zhao MG, Huang JY, Zhou Y, Chen Q, Pan XH, He HP et al (2013) A single mesoporous ZnO/chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron 43:226–230CrossRef
24.
go back to reference Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189CrossRef Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189CrossRef
25.
go back to reference Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306CrossRef Senthamizhan A, Balusamy B, Uyar T (2016) Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 408:1285–1306CrossRef
26.
go back to reference Sastry RK, Anshul S, Rao NH (2013) Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol Mys 50:831–841CrossRef Sastry RK, Anshul S, Rao NH (2013) Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol Mys 50:831–841CrossRef
27.
go back to reference Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRef Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRef
28.
go back to reference Sadik OA, Aluoch AO, Zhou AL (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765CrossRef Sadik OA, Aluoch AO, Zhou AL (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765CrossRef
29.
go back to reference Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70CrossRef Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70CrossRef
30.
go back to reference Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5:183–186CrossRef Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5:183–186CrossRef
31.
go back to reference Zhang XQ, Guo Q, Cui DX (2009) Recent advances in nanotechnology applied to biosensors. Sensors Basel 9:1033–1053CrossRef Zhang XQ, Guo Q, Cui DX (2009) Recent advances in nanotechnology applied to biosensors. Sensors Basel 9:1033–1053CrossRef
32.
go back to reference Lee BY, Sung MG, Lee J, Baik KY, Kwon YK, Lee MS et al (2011) Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5:4373–4379CrossRef Lee BY, Sung MG, Lee J, Baik KY, Kwon YK, Lee MS et al (2011) Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5:4373–4379CrossRef
33.
go back to reference Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmstrom J (2014) Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2:4593–4609CrossRef Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmstrom J (2014) Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2:4593–4609CrossRef
34.
go back to reference Pang X, Pan J, Wang L, Ren W, Gao P, Wei Q, Du B (2015) CdSe quantum dot functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6. Biosens Bioelectron 71:88–97CrossRef Pang X, Pan J, Wang L, Ren W, Gao P, Wei Q, Du B (2015) CdSe quantum dot functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6. Biosens Bioelectron 71:88–97CrossRef
35.
go back to reference Xu K, Huang JR, Ye ZZ, Ying YB, Li YB (2009) Recent development of nanomaterials used in DNA biosensors. Sensors Basel 9:5534–5557CrossRef Xu K, Huang JR, Ye ZZ, Ying YB, Li YB (2009) Recent development of nanomaterials used in DNA biosensors. Sensors Basel 9:5534–5557CrossRef
36.
go back to reference Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534CrossRef Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534CrossRef
37.
go back to reference Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci 4:033001CrossRef Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci 4:033001CrossRef
38.
go back to reference Birol H, Rambo CR, Guiotoku M, Hotza D (2013) Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review. RSC Adv 3:2873–2884CrossRef Birol H, Rambo CR, Guiotoku M, Hotza D (2013) Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review. RSC Adv 3:2873–2884CrossRef
39.
go back to reference Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15:1869–1894CrossRef Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15:1869–1894CrossRef
40.
go back to reference Stafiniak A, Boratynski B, Baranowska-Korczyc A, Szyszka A, Ramiaczek-Krasowska M, Prazmowska J et al (2011) A novel electrospun ZnO nanofibers biosensor fabrication. Sens Actuat B Chem 160:1413–1418CrossRef Stafiniak A, Boratynski B, Baranowska-Korczyc A, Szyszka A, Ramiaczek-Krasowska M, Prazmowska J et al (2011) A novel electrospun ZnO nanofibers biosensor fabrication. Sens Actuat B Chem 160:1413–1418CrossRef
41.
go back to reference Matlock-Colangelo L, Baeumner AJ (2012) Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12:2612–2620CrossRef Matlock-Colangelo L, Baeumner AJ (2012) Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12:2612–2620CrossRef
42.
go back to reference Stevens M (2014) Designing nanomaterials for ultrasensitive biosensing. New Biotechnol 31:S36CrossRef Stevens M (2014) Designing nanomaterials for ultrasensitive biosensing. New Biotechnol 31:S36CrossRef
43.
go back to reference Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45CrossRef Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45CrossRef
44.
go back to reference Si P, Huang YJ, Wang TH, Ma JM (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502CrossRef Si P, Huang YJ, Wang TH, Ma JM (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502CrossRef
45.
go back to reference Updike SJ, Shults M, Ekman B (1982) Implanting the glucose enzyme electrode-problems, progress, and alternative solutions. Diabetes Care 5:207–212CrossRef Updike SJ, Shults M, Ekman B (1982) Implanting the glucose enzyme electrode-problems, progress, and alternative solutions. Diabetes Care 5:207–212CrossRef
46.
go back to reference Zhou SH, Feng X, Shi HY, Chen J, Zhang F, Song WB (2013) Direct growth of vertically aligned arrays of Cu(OH) (2) nanotubes for the electrochemical sensing of glucose. Sens Actuat B Chem 177:445–452CrossRef Zhou SH, Feng X, Shi HY, Chen J, Zhang F, Song WB (2013) Direct growth of vertically aligned arrays of Cu(OH) (2) nanotubes for the electrochemical sensing of glucose. Sens Actuat B Chem 177:445–452CrossRef
47.
go back to reference Ahmad R, Tripathy N, Kim JH, Hahn YB (2012) Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes. Sens Actuat B Chem 174:195–201CrossRef Ahmad R, Tripathy N, Kim JH, Hahn YB (2012) Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes. Sens Actuat B Chem 174:195–201CrossRef
48.
go back to reference Yang C, Xu CX, Wang XM (2012) ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmuir 28:4580–4585CrossRef Yang C, Xu CX, Wang XM (2012) ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications. Langmuir 28:4580–4585CrossRef
49.
go back to reference Zhao MG, Zhou Y, Cai B, Ma Y, Cai H, Ye ZZ et al (2013) The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceram Int 39:9319–9323CrossRef Zhao MG, Zhou Y, Cai B, Ma Y, Cai H, Ye ZZ et al (2013) The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceram Int 39:9319–9323CrossRef
50.
go back to reference Palod PA, Singh V (2015) Facile synthesis of high density polypyrrole nanofiber network with controllable diameters by one step template free electropolymerization for biosensing applications. Sens Actuat B Chem 209:85–93CrossRef Palod PA, Singh V (2015) Facile synthesis of high density polypyrrole nanofiber network with controllable diameters by one step template free electropolymerization for biosensing applications. Sens Actuat B Chem 209:85–93CrossRef
51.
go back to reference Yehezkeli O, Yan YM, Baravik I, Tel-Vered R, Willner I (2009) Integrated oligoaniline-cross-linked bomposites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Chem Eur J 15:2674–2679CrossRef Yehezkeli O, Yan YM, Baravik I, Tel-Vered R, Willner I (2009) Integrated oligoaniline-cross-linked bomposites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Chem Eur J 15:2674–2679CrossRef
52.
go back to reference Wang HC, Wang XS, Zhang XQ, Qin X, Zhao ZX, Miao ZY et al (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146CrossRef Wang HC, Wang XS, Zhang XQ, Qin X, Zhao ZX, Miao ZY et al (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146CrossRef
53.
go back to reference Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef
54.
go back to reference Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611CrossRef Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611CrossRef
55.
go back to reference Su S, Sun HF, Xu F, Yuwen LH, Fan CH, Wang LH (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181:1497–1503CrossRef Su S, Sun HF, Xu F, Yuwen LH, Fan CH, Wang LH (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181:1497–1503CrossRef
56.
go back to reference Zhang HF, Meng ZC, Wang Q, Zheng JB (2011) A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film. Sens Actuat B Chem 158:23–27CrossRef Zhang HF, Meng ZC, Wang Q, Zheng JB (2011) A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film. Sens Actuat B Chem 158:23–27CrossRef
57.
go back to reference Devasenathipathy R, Mani V, Chen SM, Huang ST, Huang TT, Lin CM, Hwa KY, Chen TY, Chen BJ (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol 78:40–45CrossRef Devasenathipathy R, Mani V, Chen SM, Huang ST, Huang TT, Lin CM, Hwa KY, Chen TY, Chen BJ (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme Microb Technol 78:40–45CrossRef
58.
go back to reference Azak H, Kurbanoglu S, Yildiz HB, Ozkan SA (2016) Electrochemical glucose biosensing via new generation DTP type conducting polymers/gold nanoparticles/glucose oxidase modified electrodes. J Electroanal Chem 770:90–97CrossRef Azak H, Kurbanoglu S, Yildiz HB, Ozkan SA (2016) Electrochemical glucose biosensing via new generation DTP type conducting polymers/gold nanoparticles/glucose oxidase modified electrodes. J Electroanal Chem 770:90–97CrossRef
59.
go back to reference Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef
60.
go back to reference Ahmad M, Pan CF, Luo ZX, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308–9313CrossRef Ahmad M, Pan CF, Luo ZX, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308–9313CrossRef
61.
go back to reference Liu HC, Tsai CC, Wang GJ (2013) Glucose biosensors based on a gold nanodendrite modified screen-printed electrode. Nanotechnology 24:215101CrossRef Liu HC, Tsai CC, Wang GJ (2013) Glucose biosensors based on a gold nanodendrite modified screen-printed electrode. Nanotechnology 24:215101CrossRef
62.
go back to reference Pletcher D (1984) Electrocatalysis—present and future. J Appl Electrochem 14:403–415CrossRef Pletcher D (1984) Electrocatalysis—present and future. J Appl Electrochem 14:403–415CrossRef
63.
go back to reference Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848CrossRef Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848CrossRef
64.
go back to reference Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: aperspective and an evaluation. Int J Electrochem Sci 5:1246–1301 Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: aperspective and an evaluation. Int J Electrochem Sci 5:1246–1301
65.
go back to reference Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504CrossRef Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504CrossRef
66.
go back to reference Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660CrossRef Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660CrossRef
67.
go back to reference Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448CrossRef Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448CrossRef
68.
go back to reference Li XL, Yao JY, Liu FL, He HC, Zhou M, Mao N et al (2013) Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens Actuat B Chem 181:501–508CrossRef Li XL, Yao JY, Liu FL, He HC, Zhou M, Mao N et al (2013) Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens Actuat B Chem 181:501–508CrossRef
69.
go back to reference Wang Q, Wang QY, Qi K, Xue TY, Liu C, Zheng WT et al (2015) In situ preparation of porous Pd nanotubes on a GCE for non-enzymatic electrochemical glucose sensors. Anal Methods 7:8605–8610CrossRef Wang Q, Wang QY, Qi K, Xue TY, Liu C, Zheng WT et al (2015) In situ preparation of porous Pd nanotubes on a GCE for non-enzymatic electrochemical glucose sensors. Anal Methods 7:8605–8610CrossRef
70.
go back to reference Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486CrossRef Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486CrossRef
71.
go back to reference Zhang YQ, Wang YZ, Jia JB, Wang JG (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuat B Chem 171:580–587CrossRef Zhang YQ, Wang YZ, Jia JB, Wang JG (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuat B Chem 171:580–587CrossRef
72.
go back to reference Ding Y, Liu YX, Parisi J, Zhang LC, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron 28:393–398CrossRef Ding Y, Liu YX, Parisi J, Zhang LC, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron 28:393–398CrossRef
73.
go back to reference Li HX, Hao WL, Hu JC, Wu HY (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230CrossRef Li HX, Hao WL, Hu JC, Wu HY (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230CrossRef
74.
go back to reference Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952CrossRef Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952CrossRef
75.
go back to reference Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong JA (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioelectron 26:2756–2760CrossRef Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong JA (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioelectron 26:2756–2760CrossRef
76.
go back to reference Wang W, Zhang LL, Tong SF, Li X, Song WB (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714CrossRef Wang W, Zhang LL, Tong SF, Li X, Song WB (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714CrossRef
77.
go back to reference Zhou Y, Wang L, Ye ZZ, Zhao MG, Cai H, Huang JY (2013) Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor. Appl Surf Sci 285:344–349CrossRef Zhou Y, Wang L, Ye ZZ, Zhao MG, Cai H, Huang JY (2013) Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor. Appl Surf Sci 285:344–349CrossRef
78.
go back to reference Wang X, Hui CG, Liu H, Du GJ, He XS, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuat B Chem 144:220–225CrossRef Wang X, Hui CG, Liu H, Du GJ, He XS, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuat B Chem 144:220–225CrossRef
79.
go back to reference Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407CrossRef Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407CrossRef
80.
go back to reference Zhang P, Zhang L, Zhao GC, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417CrossRef Zhang P, Zhang L, Zhao GC, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417CrossRef
81.
go back to reference Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784CrossRef Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784CrossRef
82.
go back to reference Qian L, Mao JF, Tian XQ, Yuan HY, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sens Actuat B Chem 176:952–959CrossRef Qian L, Mao JF, Tian XQ, Yuan HY, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sens Actuat B Chem 176:952–959CrossRef
83.
go back to reference Casella IG (2002) Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. J Electroanal Chem 520:119–125CrossRef Casella IG (2002) Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. J Electroanal Chem 520:119–125CrossRef
84.
go back to reference Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal ChimActa 556:46–57CrossRef Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal ChimActa 556:46–57CrossRef
85.
go back to reference Ding Y, Wang Y, Su LA, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co(3) O(4) nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef Ding Y, Wang Y, Su LA, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co(3) O(4) nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548CrossRef
86.
go back to reference Han L, Yang DP, Liu AH (2015) Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens Bioelectron 63:145–152CrossRef Han L, Yang DP, Liu AH (2015) Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens Bioelectron 63:145–152CrossRef
87.
go back to reference Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef
88.
go back to reference Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB et al (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169 Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB et al (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169
89.
go back to reference Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors Basel 12:5996–6022CrossRef Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors Basel 12:5996–6022CrossRef
90.
go back to reference Zhu ZG, Garcia-Gancedo L, Chen C, Zhu XR, Xie HQ, Flewitt AJ et al (2013) Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sens Actuat B Chem 178:586–592CrossRef Zhu ZG, Garcia-Gancedo L, Chen C, Zhu XR, Xie HQ, Flewitt AJ et al (2013) Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sens Actuat B Chem 178:586–592CrossRef
91.
go back to reference Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787CrossRef Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787CrossRef
92.
go back to reference Gao HC, Duan HW (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419CrossRef Gao HC, Duan HW (2015) 2D and 3D graphene materials: preparation and bioelectrochemical applications. Biosens Bioelectron 65:404–419CrossRef
93.
go back to reference Liu MM, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212CrossRef Liu MM, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212CrossRef
94.
go back to reference Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58CrossRef Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58CrossRef
95.
go back to reference Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977CrossRef Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977CrossRef
96.
go back to reference Zhang TJ, Wang W, Zhang DY, Zhang XX, Ma YR, Zhou YL et al (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160CrossRef Zhang TJ, Wang W, Zhang DY, Zhang XX, Ma YR, Zhou YL et al (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160CrossRef
97.
go back to reference Yang T, Zhou N, Zhang YC, Zhang W, Jiao K, Li GC (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyanilinenanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24:2165–2170CrossRef Yang T, Zhou N, Zhang YC, Zhang W, Jiao K, Li GC (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyanilinenanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24:2165–2170CrossRef
98.
go back to reference Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571CrossRef Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571CrossRef
99.
go back to reference Bo XJ, Bai J, Qi B, Guo LP (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77–83CrossRef Bo XJ, Bai J, Qi B, Guo LP (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77–83CrossRef
100.
go back to reference Zhang PP, Zhao XN, Zhang X, Lai Y, Wang XT, Li JF et al (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the beta-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interfaces 6:7563–7571CrossRef Zhang PP, Zhao XN, Zhang X, Lai Y, Wang XT, Li JF et al (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the beta-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interfaces 6:7563–7571CrossRef
101.
go back to reference Zhang XM, Li LM, Peng X, Chen RS, Huo KF, Chu PK (2013) Non-enzymatic hydrogen peroxide photo electrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta 108:491–496CrossRef Zhang XM, Li LM, Peng X, Chen RS, Huo KF, Chu PK (2013) Non-enzymatic hydrogen peroxide photo electrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta 108:491–496CrossRef
102.
go back to reference Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503CrossRef Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503CrossRef
103.
go back to reference Yu JJ, Ma JR, Zhao FQ, Zeng BZ (2007) Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3. Electrochim Acta 53:1995–2001CrossRef Yu JJ, Ma JR, Zhao FQ, Zeng BZ (2007) Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3. Electrochim Acta 53:1995–2001CrossRef
104.
go back to reference Yu CM, Zhou XH, Gu HY (2010) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film. Electrochim Acta 55:8738–8743CrossRef Yu CM, Zhou XH, Gu HY (2010) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film. Electrochim Acta 55:8738–8743CrossRef
Metadata
Title
Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2
Authors
Jin Li
Haifeng Hu
Hanyang Li
Chengbao Yao
Publication date
24-05-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1221-4

Other articles of this Issue 17/2017

Journal of Materials Science 17/2017 Go to the issue

Premium Partners