Skip to main content
Top
Published in: Journal of Materials Science 8/2020

15-11-2019 | Energy materials

Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media

Authors: Kaikai Zhang, Wanshan Mai, Jin Li, Huan Wang, Guoqiang Li, Wei Hu

Published in: Journal of Materials Science | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here, a support-type composite catalyst TiN/IrO2 with an outstanding catalytic activity for OER in acid electrolyte was prepared by a colloidal method. It was found the ultra-fine IrO2 nanoclusters (1.41 ± 0.19 nm) scattered on the TiN support like strawberry seeds, which not only provided the higher active surface area, but also exposed much more surface unsaturated Ir atoms with the higher reactive activity compared to saturated iridium atoms. And the mesoporous structure and high surface area inherited from the TiN carrier were also maintained in the composite. Benefit from these characteristics, the as-prepared TiN/IrO2 with IrO2 loading of 31 wt% possessed a mass-normalized OER activity of 874.0 A g−1(IrO2) at the potential of 1.6 V that was about 5.0 times of the unsupported IrO2 (176.0 A g−1IrO2).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sun W, Zhou Z, Zaman WQ, Cao L, Yang J (2017) Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl Mater Interfaces 9(48):41855–41862 Sun W, Zhou Z, Zaman WQ, Cao L, Yang J (2017) Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl Mater Interfaces 9(48):41855–41862
2.
go back to reference Tariq M, Zaman WQ, Sun W, Zhou Z, Wu Y, Cao L, Yang J (2018) Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem Eng 6(4):4854–4862 Tariq M, Zaman WQ, Sun W, Zhou Z, Wu Y, Cao L, Yang J (2018) Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem Eng 6(4):4854–4862
3.
go back to reference Tackett BM, Sheng W, Kattel S, Yao S, Yan B, Kuttiyiel KA, Chen JG (2018) Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores. ACS Catal 8(3):2615–2621 Tackett BM, Sheng W, Kattel S, Yao S, Yan B, Kuttiyiel KA, Chen JG (2018) Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores. ACS Catal 8(3):2615–2621
4.
go back to reference Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mater 7(1):1601275 Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mater 7(1):1601275
5.
go back to reference Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22(13):6010–6016 Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22(13):6010–6016
6.
go back to reference Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772 Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772
7.
go back to reference Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7(2):820–830 Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7(2):820–830
8.
go back to reference Hu W, Chen S, Xia Q (2014) IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int J Hydrogen Energy 39(13):6967–6976 Hu W, Chen S, Xia Q (2014) IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int J Hydrogen Energy 39(13):6967–6976
10.
go back to reference Zhao S, Stocks A, Rasimick B, More K, Xu H (2018) Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers. J Electrochem Soc 165(2):F82–F89 Zhao S, Stocks A, Rasimick B, More K, Xu H (2018) Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers. J Electrochem Soc 165(2):F82–F89
11.
go back to reference Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and In-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25(7):1074–1081 Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and In-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25(7):1074–1081
12.
go back to reference Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Adv 4(19):9701–9708 Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Adv 4(19):9701–9708
13.
go back to reference Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6(6):3321–3328 Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6(6):3321–3328
14.
go back to reference Karimi F, Peppley BA (2017) Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis. Electrochim Acta 246:654–670 Karimi F, Peppley BA (2017) Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis. Electrochim Acta 246:654–670
15.
go back to reference Kuttiyiel KA, Sasaki K, Chen W, Su D, Adzic RR (2014) Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A 2(3):591–594 Kuttiyiel KA, Sasaki K, Chen W, Su D, Adzic RR (2014) Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A 2(3):591–594
16.
go back to reference Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulu P (1999) Passivation and anodic oxidation of duplex TiN coating on stainless steel. J Electrochem Soc 146(11):4082–4086 Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulu P (1999) Passivation and anodic oxidation of duplex TiN coating on stainless steel. J Electrochem Soc 146(11):4082–4086
17.
go back to reference Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Watanabe M (2011) Electrochemical activity and durability of platinum catalysts supported on nanometer-size titanium nitride particles for polymer electrolyte fuel cells. Electrochemistry 79(5):399–403 Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Watanabe M (2011) Electrochemical activity and durability of platinum catalysts supported on nanometer-size titanium nitride particles for polymer electrolyte fuel cells. Electrochemistry 79(5):399–403
18.
go back to reference Yang S, Tak YJ, Kim J, Soon A, Lee H (2017) Support effect in single-atom platinum catalyst for electrochemical oxygen reduction support effect in single-atom platinum catalyst for electrochemical oxygen reduction. ACS Catal 7(2):1301–1307 Yang S, Tak YJ, Kim J, Soon A, Lee H (2017) Support effect in single-atom platinum catalyst for electrochemical oxygen reduction support effect in single-atom platinum catalyst for electrochemical oxygen reduction. ACS Catal 7(2):1301–1307
19.
go back to reference Zheng Y, Zhang J, Zhan H, Sun D, Dang D, Tian XL (2018) Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem Commun 91:31–35 Zheng Y, Zhang J, Zhan H, Sun D, Dang D, Tian XL (2018) Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem Commun 91:31–35
20.
go back to reference Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55(6):2058–2062 Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55(6):2058–2062
21.
go back to reference Li G, Li K, Yang L, Chang J, Ma R, Wu Z, Xing W (2018) Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl Mater Interfaces 10(44):38117–38124 Li G, Li K, Yang L, Chang J, Ma R, Wu Z, Xing W (2018) Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl Mater Interfaces 10(44):38117–38124
22.
go back to reference Cheng J, Zhang H, Ma H, Zhong H, Zou Y (2009) Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams’ fusion method. Int J Hydrogen Energy 34(16):6609–6661 Cheng J, Zhang H, Ma H, Zhong H, Zou Y (2009) Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams’ fusion method. Int J Hydrogen Energy 34(16):6609–6661
23.
go back to reference Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2000) Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Electrochem Soc 147(6):2018–2022 Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2000) Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Electrochem Soc 147(6):2018–2022
24.
go back to reference Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2001) IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Appl Electrochem 31(11):1179–1183 Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2001) IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Appl Electrochem 31(11):1179–1183
25.
go back to reference Dong Y, Wu Y, Liu M, Li J (2013) Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 6(10):2016–2021 Dong Y, Wu Y, Liu M, Li J (2013) Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 6(10):2016–2021
26.
go back to reference Wei Z, Wang Y, Zhang J (2018) Electrochemical detection of NGF using a reduced graphene oxide-titanium nitride nanocomposite. Sci Rep 8(1):6929 Wei Z, Wang Y, Zhang J (2018) Electrochemical detection of NGF using a reduced graphene oxide-titanium nitride nanocomposite. Sci Rep 8(1):6929
27.
go back to reference Li C, Shi J, Zhu L, Zhao Y, Lu J, Xu L (2018) Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res 11(8):4302–4312 Li C, Shi J, Zhu L, Zhao Y, Lu J, Xu L (2018) Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res 11(8):4302–4312
28.
go back to reference Liao Y, Xiang J, Yuan L, Hao Z, Gu J, Chen X, Huang Y (2018) Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl Mater Interfaces 10(44):37955–37962 Liao Y, Xiang J, Yuan L, Hao Z, Gu J, Chen X, Huang Y (2018) Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl Mater Interfaces 10(44):37955–37962
29.
go back to reference Yang C, Wang H, Lu S, Wu C, Liu Y, Tan Q, Xiang Y (2015) Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim Acta 182:834–840 Yang C, Wang H, Lu S, Wu C, Liu Y, Tan Q, Xiang Y (2015) Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim Acta 182:834–840
30.
go back to reference Oktay S, Kahraman Z, Urgen M, Kazmanli K (2015) XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl Surf Sci 328:255–261 Oktay S, Kahraman Z, Urgen M, Kazmanli K (2015) XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl Surf Sci 328:255–261
31.
go back to reference Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931 Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931
32.
go back to reference Zhao D, Cui Z, Wang S, Qin J, Cao M (2016) VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J Mater Chem A 4(20):7914–7923 Zhao D, Cui Z, Wang S, Qin J, Cao M (2016) VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J Mater Chem A 4(20):7914–7923
33.
go back to reference Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Hashagen M (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48(5):261–273 Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Hashagen M (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48(5):261–273
34.
go back to reference Xiao H, Jia C, Liu B, Huang Y, Cai W, Li J, Huang Y (2019) Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc 141(7):3014–3023 Xiao H, Jia C, Liu B, Huang Y, Cai W, Li J, Huang Y (2019) Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc 141(7):3014–3023
35.
go back to reference Pfeifer V, Jones TE, Velasco Vélez JJ, Arrigo R, Piccinin S, Hävecker M, Schlögl R (2017) In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem Sci 8(3):2143–2149 Pfeifer V, Jones TE, Velasco Vélez JJ, Arrigo R, Piccinin S, Hävecker M, Schlögl R (2017) In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem Sci 8(3):2143–2149
36.
go back to reference Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12(6):408–411 Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12(6):408–411
37.
go back to reference Kuo D-Y, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Suntivich J (2017) Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J Am Chem Soc 139(9):3473–3479 Kuo D-Y, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Suntivich J (2017) Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J Am Chem Soc 139(9):3473–3479
38.
go back to reference Mustain WE, Capuano CB, Maric R, Ayers KE, Zhao S, Danilovic N, Mustain WE (2015) Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J Electrochem Soc 162(12):F1292–F1298 Mustain WE, Capuano CB, Maric R, Ayers KE, Zhao S, Danilovic N, Mustain WE (2015) Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J Electrochem Soc 162(12):F1292–F1298
39.
go back to reference Lettenmeier P, Wang L, Golla-Schindler U, Gazdzicki P, Cañas NA, Handl M, Friedrich KA (2016) Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed 55(2):742–746 Lettenmeier P, Wang L, Golla-Schindler U, Gazdzicki P, Cañas NA, Handl M, Friedrich KA (2016) Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed 55(2):742–746
40.
go back to reference Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4(3):746–756 Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4(3):746–756
41.
go back to reference Han B, Risch M, Belden S, Lee S, Bayer D, Mutoro E, Yang SH (2018) Screening oxide support materials for OER catalysts in acid. J Electrochem Soc 165(10):F813–F820 Han B, Risch M, Belden S, Lee S, Bayer D, Mutoro E, Yang SH (2018) Screening oxide support materials for OER catalysts in acid. J Electrochem Soc 165(10):F813–F820
42.
go back to reference Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR (2017) CNT based photoelectrodes for PEC generation of hydrogen: a review. Int J Hydrogen Energy 42(7):3994–4006 Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR (2017) CNT based photoelectrodes for PEC generation of hydrogen: a review. Int J Hydrogen Energy 42(7):3994–4006
43.
go back to reference Guan J, Li D, Si R, Miao S, Zhang F, Li C (2017) Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal 7(9):5983–5986 Guan J, Li D, Si R, Miao S, Zhang F, Li C (2017) Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal 7(9):5983–5986
44.
go back to reference Zhou X, Yang J, Li C (2012) Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters. J Phys Chem A 116(40):9985–9995 Zhou X, Yang J, Li C (2012) Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters. J Phys Chem A 116(40):9985–9995
45.
go back to reference Ping Y, Nielsen RJ, Goddard WA (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2(110) surface. J Am Chem Soc 139(1):149–155 Ping Y, Nielsen RJ, Goddard WA (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2(110) surface. J Am Chem Soc 139(1):149–155
46.
go back to reference Fuentes RE, Colon-Mercado HR, Martinez-Rodriguez MJ (2013) Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J Electrochem Soc 161(1):F77–F82 Fuentes RE, Colon-Mercado HR, Martinez-Rodriguez MJ (2013) Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J Electrochem Soc 161(1):F77–F82
47.
go back to reference Godínez-Salomón F, Albiter L, Alia SM, Pivovar BS, Camacho-Forero LE, Balbuena PB, Rhodes CP (2018) Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11):10498–10520 Godínez-Salomón F, Albiter L, Alia SM, Pivovar BS, Camacho-Forero LE, Balbuena PB, Rhodes CP (2018) Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11):10498–10520
48.
go back to reference Fu L, Zeng X, Cheng G, Luo W (2018) IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl Mater Interfaces 10(30):24993–24998 Fu L, Zeng X, Cheng G, Luo W (2018) IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl Mater Interfaces 10(30):24993–24998
49.
go back to reference Jiang B, Wang T, Cheng Y, Liao F, Wu K, Shao M (2018) Ir/g-C3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes. ACS Appl Mater Interfaces 10(45):39161–39167 Jiang B, Wang T, Cheng Y, Liao F, Wu K, Shao M (2018) Ir/g-C3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes. ACS Appl Mater Interfaces 10(45):39161–39167
50.
go back to reference Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54(10):297–2979 Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54(10):297–2979
51.
go back to reference Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zou X (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Ed 58(23):7631–7635 Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zou X (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Ed 58(23):7631–7635
52.
go back to reference Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081 Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081
Metadata
Title
Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media
Authors
Kaikai Zhang
Wanshan Mai
Jin Li
Huan Wang
Guoqiang Li
Wei Hu
Publication date
15-11-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04201-4

Other articles of this Issue 8/2020

Journal of Materials Science 8/2020 Go to the issue

Premium Partners