Skip to main content
Top
Published in: Journal of Materials Science 8/2020

22-11-2019 | Metals & corrosion

Master sintering curves of nickel-titanium and nickel-titanium open-cell foams fabricated by spark plasma sintering

Authors: Peter T. Nivala, Susan P. James

Published in: Journal of Materials Science | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Master sintering curves (MSCs) were developed for monolithic nickel-titanium (NiTi) and composite NiTi-copper specimens densified by spark plasma sintering (SPS) to efficiently establish the density–process parameter relationship. NiTi-copper specimens simulated the porogen (a.k.a. space holder) replication technique used to fabricate NiTi open-cell foams. The effect of copper porogens on the densification behavior of NiTi powder was examined through the comparison of the generated MSCs. Several additional monolithic NiTi specimens and a NiTi open-cell foam specimen were sintered isothermally to verify the accuracy of the generated MSCs. The experimental data indicated the copper porogens had little-to-no effect on the densification behavior of NiTi powder. Using an apparent activation energy of 201 kJ mol-1, both MSCs were able to predict the final density of the validation specimens within 1.2%. The current study demonstrated the successful application of the MSC concept to the SPS of monolithic NiTi and composite NiTi-copper specimens enabling accurate predictions of final specimen density based on any arbitrary time–temperature sintering profile. This efficient mapping of the density–process parameter space has eliminated the trial-and-error methodology typically used and has resulted in significant savings of time, energy, and raw materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. Springer, Boston, pp 1–51 Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. Springer, Boston, pp 1–51
2.
go back to reference Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of niti implants: a review. Prog Mater Sci 57(5):911–946 Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of niti implants: a review. Prog Mater Sci 57(5):911–946
3.
go back to reference Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552 Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng 221(4):535–552
4.
go back to reference Lagoudas Dimitris C, Godard Olivier J, Lagoudas Magdalini Z (2003) Design of space systems using shape memory alloys. In: Baz Amr M (ed) Smart structures and materials 2003: smart structures and integrated systems, vol 5056. SPIE, San Diego Lagoudas Dimitris C, Godard Olivier J, Lagoudas Magdalini Z (2003) Design of space systems using shape memory alloys. In: Baz Amr M (ed) Smart structures and materials 2003: smart structures and integrated systems, vol 5056. SPIE, San Diego
5.
go back to reference Wu MH, Schetky LM (2000) Industrial applications for shape memory alloys. In: Proceedings of the international conference on shape memory and superelastic technologies. Pacific Grove, pp 171–182 Wu MH, Schetky LM (2000) Industrial applications for shape memory alloys. In: Proceedings of the international conference on shape memory and superelastic technologies. Pacific Grove, pp 171–182
6.
go back to reference Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous niti for bone implants: A review. Acta Biomater 4(4):773–782 Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous niti for bone implants: A review. Acta Biomater 4(4):773–782
7.
go back to reference Gotman I (2010) Fabrication of load-bearing NiTi scaffolds for bone ingrowth by Ni foam conversion. Adv Eng Mater 12(7):B320–B325 Gotman I (2010) Fabrication of load-bearing NiTi scaffolds for bone ingrowth by Ni foam conversion. Adv Eng Mater 12(7):B320–B325
8.
go back to reference Bewerse C, Brinson LC, Dunand DC (2016) Porous shape-memory NiTi-Nb with microchannel arrays. Acta Mater 115:83–93 Bewerse C, Brinson LC, Dunand DC (2016) Porous shape-memory NiTi-Nb with microchannel arrays. Acta Mater 115:83–93
9.
go back to reference Bansiddhi A, Dunand DC (2008) Shape-memory NiTi foams produced by replication of NaCl space-holders. Acta Biomater 4(6):1996–2007 Bansiddhi A, Dunand DC (2008) Shape-memory NiTi foams produced by replication of NaCl space-holders. Acta Biomater 4(6):1996–2007
10.
go back to reference Zhang YP, Yuan B, Zeng MQ, Chung CY, Zhang XP (2007) High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (\(\text{ NH }_{4}\text{ HCO }_{3}\)) and capsule-free hot isostatic pressing. J Mater Process Technol 192–193:439–442 Zhang YP, Yuan B, Zeng MQ, Chung CY, Zhang XP (2007) High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (\(\text{ NH }_{4}\text{ HCO }_{3}\)) and capsule-free hot isostatic pressing. J Mater Process Technol 192–193:439–442
11.
go back to reference Bansiddhi A, Dunand DC (2007) Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15(12):1612–1622 Bansiddhi A, Dunand DC (2007) Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15(12):1612–1622
12.
go back to reference Zhao X, Sun H, Lan L, Huang J, Zhang H, Wang Y (2009) Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders. Mater Lett 63(28):2402–2404 Zhao X, Sun H, Lan L, Huang J, Zhang H, Wang Y (2009) Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders. Mater Lett 63(28):2402–2404
13.
go back to reference Li DS, Zhang YP, Ma X, Zhang XP (2009) Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties. J Alloy Compd 474(1):L1–L5 Li DS, Zhang YP, Ma X, Zhang XP (2009) Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties. J Alloy Compd 474(1):L1–L5
14.
go back to reference Yen F-C, Hwang K-S, Shyi-Kaan W (2014) Fabrication of porous Ti-rich \(\text{ Ti }_{51}\text{ Ni }_{49}\) by evaporating NaCl space holder. Metall Mater Trans A 45(5):2626–2635 Yen F-C, Hwang K-S, Shyi-Kaan W (2014) Fabrication of porous Ti-rich \(\text{ Ti }_{51}\text{ Ni }_{49}\) by evaporating NaCl space holder. Metall Mater Trans A 45(5):2626–2635
15.
go back to reference Aydoğmuş T, Bor Ş (2009) Processing of porous TiNi alloys using magnesium as space holder. J Alloy Compd 478(1):705–710 Aydoğmuş T, Bor Ş (2009) Processing of porous TiNi alloys using magnesium as space holder. J Alloy Compd 478(1):705–710
16.
go back to reference Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Oxford Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Oxford
17.
go back to reference Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Am Ceram Soc 79(12):3211–3217 Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Am Ceram Soc 79(12):3211–3217
18.
go back to reference Jung ID, Ha S, Park SJ, Blaine DC, Bollina R, German RM (2016) Two-phase master sintering curve for 17–4 PH stainless steel. Metall Mater Trans A 47(11):5548–5556 Jung ID, Ha S, Park SJ, Blaine DC, Bollina R, German RM (2016) Two-phase master sintering curve for 17–4 PH stainless steel. Metall Mater Trans A 47(11):5548–5556
19.
go back to reference An K, Han MK (2005) Microstructural evolution based on the pressure-assisted master sintering surface. Mater Sci Eng A 391(1):66–70 An K, Han MK (2005) Microstructural evolution based on the pressure-assisted master sintering surface. Mater Sci Eng A 391(1):66–70
21.
go back to reference Kutty TRG, Khan KB, Hegde PV, Banerjee J, Sengupta AK, Majumdar S, Kamath HS (2004) Development of a master sintering curve for \(\text{ THO }_{2}\). J Nucl Mater 327(2):211–219 Kutty TRG, Khan KB, Hegde PV, Banerjee J, Sengupta AK, Majumdar S, Kamath HS (2004) Development of a master sintering curve for \(\text{ THO }_{2}\). J Nucl Mater 327(2):211–219
22.
go back to reference Song X, Jie L, Zhang T, Ma J (2011) Two-stage master sintering curve approach to sintering kinetics of undoped and \(\text{ AL }_{2}\text{ O }_{3}\)-doped 8 mol% yttria-stabilized cubic zirconia. J Am Ceram Soc 94(4):1053–1059 Song X, Jie L, Zhang T, Ma J (2011) Two-stage master sintering curve approach to sintering kinetics of undoped and \(\text{ AL }_{2}\text{ O }_{3}\)-doped 8 mol% yttria-stabilized cubic zirconia. J Am Ceram Soc 94(4):1053–1059
23.
go back to reference Tatami J, Suzuki Y, Wakihara T, Meguro T, Komeya K (2006) Control of shrinkage during sintering of alumina ceramics based on master sintering curve theory. In: Ohji T, Sekino T, Niihara K (eds) The science of engineering ceramics III. Key engineering materials, vol 317. Trans Tech Publications, pp 11–14 Tatami J, Suzuki Y, Wakihara T, Meguro T, Komeya K (2006) Control of shrinkage during sintering of alumina ceramics based on master sintering curve theory. In: Ohji T, Sekino T, Niihara K (eds) The science of engineering ceramics III. Key engineering materials, vol 317. Trans Tech Publications, pp 11–14
24.
go back to reference Stuer M, Carry CP, Bowen P, Zhao Z (2017) Comparison of apparent activation energies for densification of alumina powders by pulsed electric current sintering (spark plasma sintering) and conventional sintering-toward applications for transparent polycrystalline alumina. J Mater Res 32(17):3309–3318 Stuer M, Carry CP, Bowen P, Zhao Z (2017) Comparison of apparent activation energies for densification of alumina powders by pulsed electric current sintering (spark plasma sintering) and conventional sintering-toward applications for transparent polycrystalline alumina. J Mater Res 32(17):3309–3318
25.
go back to reference Aminzare M, Golestani-fard F, Guillon O, Mazaheri M, Rezaie HR (2010) Sintering behavior of an ultrafine alumina powder shaped by pressure filtration and dry pressing. Mater Sci Eng A 527(16):3807–3812 Aminzare M, Golestani-fard F, Guillon O, Mazaheri M, Rezaie HR (2010) Sintering behavior of an ultrafine alumina powder shaped by pressure filtration and dry pressing. Mater Sci Eng A 527(16):3807–3812
26.
go back to reference Ewsuk KG, Ellerby DT, DiAntonio CB (2006) Analysis of nanocrystalline and microcrystalline Zno sintering using master sintering curves. J Am Ceram Soc 89(6):2003–2009 Ewsuk KG, Ellerby DT, DiAntonio CB (2006) Analysis of nanocrystalline and microcrystalline Zno sintering using master sintering curves. J Am Ceram Soc 89(6):2003–2009
27.
go back to reference Blaine DC, Gurosik JD, Park SJ, German RM, Heaney DF (2006) Master sintering curve concepts as applied to the sintering of molybdenum. Metall Mater Trans A 37(3):715–720 Blaine DC, Gurosik JD, Park SJ, German RM, Heaney DF (2006) Master sintering curve concepts as applied to the sintering of molybdenum. Metall Mater Trans A 37(3):715–720
28.
go back to reference Nivala PT, James SP (2019) Metal open-cell foams with periodic topology fabricated by spark plasma sintering. Materialia 8:100428 Nivala PT, James SP (2019) Metal open-cell foams with periodic topology fabricated by spark plasma sintering. Materialia 8:100428
29.
go back to reference Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater Sci Eng A 241(1):290–293 Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater Sci Eng A 241(1):290–293
30.
go back to reference Majkic G, Chennoufi N, Chen YC, Salama K (2007) Synthesis of NiTi by low electrothermal loss spark plasma sintering. Metall Mater Trans A 38(10):2523–2530 Majkic G, Chennoufi N, Chen YC, Salama K (2007) Synthesis of NiTi by low electrothermal loss spark plasma sintering. Metall Mater Trans A 38(10):2523–2530
31.
go back to reference Fu YQ, Gu YW, Shearwood C, Luo JK, Flewitt AJ, Milne WI (2006) Spark plasma sintering of TiNi nano-powders for biological application. Nanotechnology 17(21):5293–5298 Fu YQ, Gu YW, Shearwood C, Luo JK, Flewitt AJ, Milne WI (2006) Spark plasma sintering of TiNi nano-powders for biological application. Nanotechnology 17(21):5293–5298
33.
go back to reference Cramer CL, Gonzalez-Julian J, Colasuonno PS, Holland TB (2017) Continuous functionally graded material to improve the thermoelectric properties of Zno. J Eur Ceram Soc 37(15):4693–4700 Cramer CL, Gonzalez-Julian J, Colasuonno PS, Holland TB (2017) Continuous functionally graded material to improve the thermoelectric properties of Zno. J Eur Ceram Soc 37(15):4693–4700
34.
go back to reference Cramer CL, Aguirre TG, Holland TB, Ma K (2019) Prediction of continuous porosity gradients in ceramics using Zno as a model material. J Am Ceram Soc 102(2):587–594 Cramer CL, Aguirre TG, Holland TB, Ma K (2019) Prediction of continuous porosity gradients in ceramics using Zno as a model material. J Am Ceram Soc 102(2):587–594
35.
go back to reference James HD, Rusin RP, Teng M-H, Johnson DL (1992) Combined-stage sintering model. J Am Ceram Soc 75(5):1129–1135 James HD, Rusin RP, Teng M-H, Johnson DL (1992) Combined-stage sintering model. J Am Ceram Soc 75(5):1129–1135
36.
go back to reference Park SJ, Chung SH, Martín JM, Johnson JL, German RM (2008) Master sintering curve for densification derived from a constitutive equation with consideration of grain growth: application to tungsten heavy alloys. Metall Mater Trans A 39(12):2941–2948 Park SJ, Chung SH, Martín JM, Johnson JL, German RM (2008) Master sintering curve for densification derived from a constitutive equation with consideration of grain growth: application to tungsten heavy alloys. Metall Mater Trans A 39(12):2941–2948
37.
go back to reference Gupta TK (1972) Possible correlation between density and grain size during sintering. J Am Ceram Soc 55(5):276–277 Gupta TK (1972) Possible correlation between density and grain size during sintering. J Am Ceram Soc 55(5):276–277
38.
go back to reference Rahaman MN, De Jonghe LC, Chu M-Y (1991) Effect of green density on densification and creep during sintering. J Am Ceram Soc 74(3):514–519 Rahaman MN, De Jonghe LC, Chu M-Y (1991) Effect of green density on densification and creep during sintering. J Am Ceram Soc 74(3):514–519
39.
go back to reference Robertson IM, Schaffer GB (2010) Review of densification of titanium based powder systems in press and sinter processing. Powder Metall 53(2):146–162 Robertson IM, Schaffer GB (2010) Review of densification of titanium based powder systems in press and sinter processing. Powder Metall 53(2):146–162
40.
go back to reference Blaine DC, Park S, German RM (2005) Master sintering curve for a two-phase material. In: Proceedings of the 4th international conference on science, technology and applications of sintering. pp 264–267 Blaine DC, Park S, German RM (2005) Master sintering curve for a two-phase material. In: Proceedings of the 4th international conference on science, technology and applications of sintering. pp 264–267
41.
go back to reference Teng M-H, Lai Y-C, Chen Y-T (2002) A computer program of master sintering curve model to accurately predict sintering results. West Pac Earth Sci 2(2):171–180 Teng M-H, Lai Y-C, Chen Y-T (2002) A computer program of master sintering curve model to accurately predict sintering results. West Pac Earth Sci 2(2):171–180
42.
go back to reference Kutty TRG, Khan KB, Hegde PV, Sengupta AK, Majumdar S, Kamath HS (2003) Determination of activation energy of sintering of \(\text{ Tho }_{2^{-}}\text{ U }_{3}\text{ O }_{8}\) pellets using the master sintering curve approach. Sci Sinter 35(3):125–132 Kutty TRG, Khan KB, Hegde PV, Sengupta AK, Majumdar S, Kamath HS (2003) Determination of activation energy of sintering of \(\text{ Tho }_{2^{-}}\text{ U }_{3}\text{ O }_{8}\) pellets using the master sintering curve approach. Sci Sinter 35(3):125–132
43.
go back to reference Shao WQ, Chen SO, Li D, Cao HS, Zhang YC, Zhang SS (2008) Prediction of densification and microstructure evolution for \(\alpha \)-\(\text{ Al }_{2}\text{ O }_{3}\) during pressureless sintering at low heating rates based on the master sintering curve theory. Sci Sinter 40(3):251–261 Shao WQ, Chen SO, Li D, Cao HS, Zhang YC, Zhang SS (2008) Prediction of densification and microstructure evolution for \(\alpha \)-\(\text{ Al }_{2}\text{ O }_{3}\) during pressureless sintering at low heating rates based on the master sintering curve theory. Sci Sinter 40(3):251–261
44.
go back to reference Blaine DC, Park S-J, German RM (2009) Linearization of master sintering curve. J Am Ceram Soc 92(7):1403–1409 Blaine DC, Park S-J, German RM (2009) Linearization of master sintering curve. J Am Ceram Soc 92(7):1403–1409
45.
go back to reference Rahaman MN (2003) Ceramic processing and sintering, first edn. CRC Press, Boca Raton Rahaman MN (2003) Ceramic processing and sintering, first edn. CRC Press, Boca Raton
46.
go back to reference Pouchly V, Maca K, Xiong Y, Shen JZ (2012) Master sintering surface—a practical approach to its construction and utilisation for spark plasma sintering prediction. Sci Sinter 44(2):169–175 Pouchly V, Maca K, Xiong Y, Shen JZ (2012) Master sintering surface—a practical approach to its construction and utilisation for spark plasma sintering prediction. Sci Sinter 44(2):169–175
47.
go back to reference Chen Z, Subhash G, Tulenko JS (2014) Master sintering curves for \(\text{ UO }_{2}\) and \(\text{ UO }_{2}\)-SiC composite processed by spark plasma sintering. J Nucl Mater 454(1):427–433 Chen Z, Subhash G, Tulenko JS (2014) Master sintering curves for \(\text{ UO }_{2}\) and \(\text{ UO }_{2}\)-SiC composite processed by spark plasma sintering. J Nucl Mater 454(1):427–433
48.
go back to reference Enneti RK, Bothara MG, Park S-J, Atre SV (2012) Development of master sintering curve for field-assisted sintering of \(\text{ HfB }_{2}\)–20SiC. Ceram Int 38(5):4369–4372 Enneti RK, Bothara MG, Park S-J, Atre SV (2012) Development of master sintering curve for field-assisted sintering of \(\text{ HfB }_{2}\)–20SiC. Ceram Int 38(5):4369–4372
49.
go back to reference Xiong Y, Fu ZY, Wang H, Wang YC, Zhang QJ (2005) Microstructure and IR transmittance of spark plasma sintering translucent AIN ceramics with \(\text{ CaF }_{2}\) additive. Mater Sci Eng B 123(1):57–62 Xiong Y, Fu ZY, Wang H, Wang YC, Zhang QJ (2005) Microstructure and IR transmittance of spark plasma sintering translucent AIN ceramics with \(\text{ CaF }_{2}\) additive. Mater Sci Eng B 123(1):57–62
50.
go back to reference Zhu LH, Huang QW, Zhao HF (2003) Preparation of nanocrystalline WC-10Co-0.8VC by spark plasma sintering. J Mater Sci Lett 22(22):1631–1633 Zhu LH, Huang QW, Zhao HF (2003) Preparation of nanocrystalline WC-10Co-0.8VC by spark plasma sintering. J Mater Sci Lett 22(22):1631–1633
51.
go back to reference Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: Properties and selection: nonferrous alloys and special-purpose materials. ASM Handbook Committee, ASM International, Materials Park, Ohio Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: Properties and selection: nonferrous alloys and special-purpose materials. ASM Handbook Committee, ASM International, Materials Park, Ohio
52.
go back to reference Nivala P (2018) Processing and properties of metal open-cell foams with periodic topology. Dissertation, Colorado State University Nivala P (2018) Processing and properties of metal open-cell foams with periodic topology. Dissertation, Colorado State University
53.
go back to reference Panigrahi BB, Godkhindi MM (2006) Dilatometric sintering study of Ti-50Ni elemental powders. Intermetallics 14(2):130–135 Panigrahi BB, Godkhindi MM (2006) Dilatometric sintering study of Ti-50Ni elemental powders. Intermetallics 14(2):130–135
54.
go back to reference Yongqing F, Shearwood C (2004) Characterization of nanocrystalline TiNi powder. Scripta Mater 50(3):319–323 Yongqing F, Shearwood C (2004) Characterization of nanocrystalline TiNi powder. Scripta Mater 50(3):319–323
55.
go back to reference Aminzare M, Mazaheri M, Golestani-fard F, Rezaie HR, Ajeian R (2011) Sintering behavior of nano alumina powder shaped by pressure filtration. Ceram Int 37(1):9–14 Aminzare M, Mazaheri M, Golestani-fard F, Rezaie HR, Ajeian R (2011) Sintering behavior of nano alumina powder shaped by pressure filtration. Ceram Int 37(1):9–14
56.
go back to reference Kotzev DL, Ward TC, Dwight DW (1981) Assessment of the adhesive bond properties of allyl 2-cyanoacrylate. J Appl Polym Sci 26(6):1941–1949 Kotzev DL, Ward TC, Dwight DW (1981) Assessment of the adhesive bond properties of allyl 2-cyanoacrylate. J Appl Polym Sci 26(6):1941–1949
57.
go back to reference Faulkner MG, Amalraj JJ, Bhattacharyya A (2000) Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater Struct 9(5):632–639 Faulkner MG, Amalraj JJ, Bhattacharyya A (2000) Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater Struct 9(5):632–639
58.
go back to reference Robinson P (1990) Properties of wrought coppers and copper alloys. In: Properties and selection: nonferrous alloys and special-purpose materials. ASM Handbook Committee, ASM International, Materials Park, Ohio Robinson P (1990) Properties of wrought coppers and copper alloys. In: Properties and selection: nonferrous alloys and special-purpose materials. ASM Handbook Committee, ASM International, Materials Park, Ohio
Metadata
Title
Master sintering curves of nickel-titanium and nickel-titanium open-cell foams fabricated by spark plasma sintering
Authors
Peter T. Nivala
Susan P. James
Publication date
22-11-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04226-9

Other articles of this Issue 8/2020

Journal of Materials Science 8/2020 Go to the issue

Premium Partners