Skip to main content
Top
Published in: Neural Computing and Applications 11/2021

01-10-2020 | Original Article

HihO: accelerating artificial intelligence interpretability for medical imaging in IoT applications using hierarchical occlusion

Opening the black box

Authors: William S. Monroe, Frank M. Skidmore, David G. Odaibo, Murat M. Tanik

Published in: Neural Computing and Applications | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the medical imaging domain, nonlinear warping has enabled pixel-by-pixel mapping of one image dataset to a reference dataset. This co-registration of data allows for robust, pixel-wise, statistical maps to be developed in the domain, leading to new insights regarding disease mechanisms. Deep learning technologies have given way to some impressive discoveries. In some applications, deep learning algorithms have surpassed the abilities of human image readers to classify data. As long as endpoints are clearly defined, and the input data volume is large enough, deep learning networks can often converge and reach prediction, classification and segmentation with success rates as high or higher than human operators. However, machine learning and deep learning algorithms are complex. Interpretability is not always a product of the classifications performed. Visualization techniques have been developed to add a layer of interpretability. The work presented here builds on a framework for augmenting statistical findings in medical imaging workflows with machine learning results. Utilizing the framework, visualization techniques for the machine learning portion are compared in an application, and a novel, lightweight technique for machine learning visualization is proposed as a means of increasing the portability of machine learning interpretability to Internet of Things applications. The novel visualization, hierarchical occlusion, can improve time to visualization by three orders of magnitude over a traditional occlusion sensitivity algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Monroe WS, Anthony T, Tanik MM, Skidmore FM (2019) Towards a framework for validating machine learning results in medical imaging: opening the black box. In: Proceedings of the practice and experience in advanced research computing on rise of the machines (learning). ACM, p 74 Monroe WS, Anthony T, Tanik MM, Skidmore FM (2019) Towards a framework for validating machine learning results in medical imaging: opening the black box. In: Proceedings of the practice and experience in advanced research computing on rise of the machines (learning). ACM, p 74
2.
go back to reference Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, p 839–847 Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, p 839–847
3.
go back to reference Lundberg SM , Lee S-I (2017) A unified approach to interpreting model predictions. In: Advances in neural information processing systems, pp 4765–4774 Lundberg SM , Lee S-I (2017) A unified approach to interpreting model predictions. In: Advances in neural information processing systems, pp 4765–4774
4.
go back to reference Grover S, Bhartia S, Yadav A, Seeja KR et al (2018) Predicting severity of Parkinson’s disease using deep learning. Procedia Comput Sci 132:1788–1794CrossRef Grover S, Bhartia S, Yadav A, Seeja KR et al (2018) Predicting severity of Parkinson’s disease using deep learning. Procedia Comput Sci 132:1788–1794CrossRef
5.
go back to reference Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep learning in neuroradiology. Am J Neuroradiol 39(10):1776–1784CrossRef Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep learning in neuroradiology. Am J Neuroradiol 39(10):1776–1784CrossRef
7.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Laak JAVD, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Laak JAVD, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
8.
go back to reference Sculley D, Gary H, Daniel G, Eugene D, Todd P, Dietmar E, Vinay C, Michael Y (2014) Machine learning: the high interest credit card of technical debt. SE4ML: software engineering for machine learning (NIPS 2014 Workshop) Sculley D, Gary H, Daniel G, Eugene D, Todd P, Dietmar E, Vinay C, Michael Y (2014) Machine learning: the high interest credit card of technical debt. SE4ML: software engineering for machine learning (NIPS 2014 Workshop)
9.
go back to reference Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D (2016) Grad-cam: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR, abs/1610.02391, 7 Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D (2016) Grad-cam: Why did you say that? Visual explanations from deep networks via gradient-based localization. CoRR, abs/1610.02391, 7
10.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D , Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV). IEEE, pp 618–626 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D , Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV). IEEE, pp 618–626
11.
go back to reference Yang C, Rangarajan A, Ranka S (2018) Visual explanations from deep 3D convolutional neural networks for alzheimer’s disease classification. arXiv preprint arXiv:1803.02544 Yang C, Rangarajan A, Ranka S (2018) Visual explanations from deep 3D convolutional neural networks for alzheimer’s disease classification. arXiv preprint arXiv:​1803.​02544
12.
go back to reference Anthony T, Robinson JP, Marstrander JR, Brook GR, Horton M, Skidmore FM (2017) High performance/throughput computing workflow for a neuro-imaging application: provenance and approaches. In: Suh SC, Anthony T (eds) Big data and visual analytics. Springer, pp 245–256 Anthony T, Robinson JP, Marstrander JR, Brook GR, Horton M, Skidmore FM (2017) High performance/throughput computing workflow for a neuro-imaging application: provenance and approaches. In: Suh SC, Anthony T (eds) Big data and visual analytics. Springer, pp 245–256
13.
go back to reference Kraguljac NV, Anthony T, Skidmore FM, Marstrander J, Morgan CJ, Reid MA, White DM, Jindal RD, Skefos NHM, Lahti AC (2019) Micro-and macrostructural white matter integrity in never-treated and currently unmedicated patients with schizophrenia and effects of short term antipsychotic treatment. Biol Psychiatry Cogn Neurosci Neuroimaging 4:462–471 Kraguljac NV, Anthony T, Skidmore FM, Marstrander J, Morgan CJ, Reid MA, White DM, Jindal RD, Skefos NHM, Lahti AC (2019) Micro-and macrostructural white matter integrity in never-treated and currently unmedicated patients with schizophrenia and effects of short term antipsychotic treatment. Biol Psychiatry Cogn Neurosci Neuroimaging 4:462–471
14.
go back to reference Yin J, Anthony T, Marstrander J, Liu Y, Burdyshaw C, Horton M, Crosby L, Glenn BR, Skidmore F (2016) Optimization of non-linear image registration in AFNI. In: Proceedings of the XSEDE16 conference on diversity, big data, and science at scale. ACM, p 6 Yin J, Anthony T, Marstrander J, Liu Y, Burdyshaw C, Horton M, Crosby L, Glenn BR, Skidmore F (2016) Optimization of non-linear image registration in AFNI. In: Proceedings of the XSEDE16 conference on diversity, big data, and science at scale. ACM, p 6
15.
go back to reference Wang L, Wu Z, Karanam S, Peng K-C, Singh RV (2018) Reducing visual confusion with discriminative attention. arXiv preprint arXiv:1811.07484 Wang L, Wu Z, Karanam S, Peng K-C, Singh RV (2018) Reducing visual confusion with discriminative attention. arXiv preprint arXiv:​1811.​07484
16.
go back to reference Scarpato N, Pieroni A, Di Nunzio L, Fallucchi F (2017) E-health-IoT universe: a review. Management 21(44):46 Scarpato N, Pieroni A, Di Nunzio L, Fallucchi F (2017) E-health-IoT universe: a review. Management 21(44):46
17.
go back to reference García-Magariño I, Muttukrishnan R, Lloret J (2019) Human-centric ai for trustworthy iot systems with explainable multilayer perceptrons. IEEE Access 7:125562–125574CrossRef García-Magariño I, Muttukrishnan R, Lloret J (2019) Human-centric ai for trustworthy iot systems with explainable multilayer perceptrons. IEEE Access 7:125562–125574CrossRef
18.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
19.
go back to reference Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, Kieburtz K, Flagg E, Chowdhury S et al (2011) The parkinson progression marker initiative (ppmi). Prog Neurobiol 95(4):629–635CrossRef Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, Kieburtz K, Flagg E, Chowdhury S et al (2011) The parkinson progression marker initiative (ppmi). Prog Neurobiol 95(4):629–635CrossRef
20.
go back to reference Arfanakis K, Fleischman DA, Grisot G, Barth CM, Varentsova A, Morris MC, Barnes LL, Bennett DA (2013) systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS ONE 8(8):e73107CrossRef Arfanakis K, Fleischman DA, Grisot G, Barth CM, Varentsova A, Morris MC, Barnes LL, Bennett DA (2013) systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS ONE 8(8):e73107CrossRef
21.
go back to reference Skidmore FM, Monroe WS, Hurt C, Nicholas AP, Gerstenecker A, Anthony T, Jololian L, Cutter G, Bashir A, Denny T, et al (2019) The emerging gait dysfunction phenotype in idiopathic parkinson’s disease. bioRxiv, pp 632638 Skidmore FM, Monroe WS, Hurt C, Nicholas AP, Gerstenecker A, Anthony T, Jololian L, Cutter G, Bashir A, Denny T, et al (2019) The emerging gait dysfunction phenotype in idiopathic parkinson’s disease. bioRxiv, pp 632638
22.
go back to reference Jenkinson M, Christian FB, Timothy EJB, Mark WW, Stephen MSF (2012) FSL. Neuroimage 62(2):782–790CrossRef Jenkinson M, Christian FB, Timothy EJB, Mark WW, Stephen MSF (2012) FSL. Neuroimage 62(2):782–790CrossRef
23.
go back to reference Cox RW (1996) Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef Cox RW (1996) Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef
24.
go back to reference Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
26.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. OSDI 16:265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. OSDI 16:265–283
28.
29.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In :European conference on computer vision. Springer, pp 818–833 Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In :European conference on computer vision. Springer, pp 818–833
30.
go back to reference Dourado CMJM Jr, da Suane Pires P, Silva RV, da Nóbrega M, Carlos A, da Barros S, Pedro P, Filho R, de Albuquerque VHC (2019) Deep learning IoT system for online stroke detection in skull computed tomography images. Comput Netw 152:25–39CrossRef Dourado CMJM Jr, da Suane Pires P, Silva RV, da Nóbrega M, Carlos A, da Barros S, Pedro P, Filho R, de Albuquerque VHC (2019) Deep learning IoT system for online stroke detection in skull computed tomography images. Comput Netw 152:25–39CrossRef
Metadata
Title
HihO: accelerating artificial intelligence interpretability for medical imaging in IoT applications using hierarchical occlusion
Opening the black box
Authors
William S. Monroe
Frank M. Skidmore
David G. Odaibo
Murat M. Tanik
Publication date
01-10-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 11/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05379-4

Other articles of this Issue 11/2021

Neural Computing and Applications 11/2021 Go to the issue

Premium Partner