Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

Historical Introduction to Gold Colloids, Clusters and Nanoparticles

Author : D. Michael P. Mingos

Published in: Gold Clusters, Colloids and Nanoparticles I

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Colloidal gold is a suspension of sub-micrometre-sized particles of gold in a fluid either water or an organic solvent. Although the gold colloids cannot be viewed using optical microscopy, the sol has an intense colour (red for particles less than 100 nm or blue/purple for larger particles). The unique optical, electronic and molecular recognition properties of gold colloids have attracted substantial interest in recent years. The properties and applications of colloidal gold particles strongly depend upon their size and shape. For example, rod-like particles have both transverse and longitudinal absorption peaks, and the anisotropy of their shapes influences their self-assembly. Gold colloids and nanoparticles have found applications in electron microscopy, electronics, nanotechnology, materials science and medicine. The development of straightforward syntheses of gold colloids in organic solvents has had a major impact on the field and the development of etching and focusing techniques has led to the isolation of some monodispersed crystalline samples which have been characterised at the atomic level. Simultaneously the isolation of molecular cluster compounds of gold, initially stabilised by phosphine and more recently organothiolato ligands, has resulted in the characterisation at the atomic level of metal particles with 3–100s of atoms. These developments have provided interesting insights into the relationships between colloids and clusters. As the diameters of these species approach the nanoscale, interesting chemical, physical and catalytic properties have emerged.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Landgraf G (1999) Gold in decoration of glass and ceramics. In: Schmidbaur H (ed) Gold: progress in chemistry, biochemistry and technology. Wiley, Chichester Landgraf G (1999) Gold in decoration of glass and ceramics. In: Schmidbaur H (ed) Gold: progress in chemistry, biochemistry and technology. Wiley, Chichester
2.
go back to reference Edwards PP, Thomas JM (2007) Gold in a metallic divided state – from Faraday to present day nanoscience. Angew Chem Int Ed 46:5480–5486 Edwards PP, Thomas JM (2007) Gold in a metallic divided state – from Faraday to present day nanoscience. Angew Chem Int Ed 46:5480–5486
3.
go back to reference Edwards PP (1992) Probing the nature of divided metals. Mat Res Soc Symp Proc 272:311–328 Edwards PP (1992) Probing the nature of divided metals. Mat Res Soc Symp Proc 272:311–328
4.
go back to reference Faraday M (1857) Bakerian lecture – experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 147:145–181 Faraday M (1857) Bakerian lecture – experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 147:145–181
5.
go back to reference Graham TH (1861) Phil Trans R Soc Lond 151:1183–1196 Graham TH (1861) Phil Trans R Soc Lond 151:1183–1196
6.
go back to reference Mie G (1908) Ann Phys (Leipzig) 25:377–445 Mie G (1908) Ann Phys (Leipzig) 25:377–445
7.
go back to reference Schmid G (2005) Nanoparticles from theory to applications. Wiley-VCH, Weinheim Schmid G (2005) Nanoparticles from theory to applications. Wiley-VCH, Weinheim
8.
go back to reference Schmid G (2008) Clusters and colloids – from theory to applications. Wiley-VCH, Weinheim Schmid G (2008) Clusters and colloids – from theory to applications. Wiley-VCH, Weinheim
9.
go back to reference Curuso F (2008) Colloids and colloid assemblies – synthesis modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim Curuso F (2008) Colloids and colloid assemblies – synthesis modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim
10.
go back to reference Fendler JH (2008) Nanoparticles and nanostructured films – preparation, characterization and applications. Wiley-VCH, Weinheim Fendler JH (2008) Nanoparticles and nanostructured films – preparation, characterization and applications. Wiley-VCH, Weinheim
11.
go back to reference Halaciuga I (2008) Formation mechanisms of metal colloids. Clarkson University Press, USA Halaciuga I (2008) Formation mechanisms of metal colloids. Clarkson University Press, USA
12.
go back to reference Feldheim DL, Foss CA Jr (2002) Metal nanoparticles – synthesis, characterization, applications. Marcel Dekker, New York Feldheim DL, Foss CA Jr (2002) Metal nanoparticles – synthesis, characterization, applications. Marcel Dekker, New York
13.
go back to reference Johnston RL, Wilcoxon JP (2012) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam Johnston RL, Wilcoxon JP (2012) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam
14.
go back to reference Rai M, Duran NE (2011) Metal nanoparticles in microbiology. Springer, Heidelberg Rai M, Duran NE (2011) Metal nanoparticles in microbiology. Springer, Heidelberg
15.
go back to reference Jennings T, Strouse G (2007) Past, present and future of gold nanoparticles. Adv Exp Med Biol 620:34–47 Jennings T, Strouse G (2007) Past, present and future of gold nanoparticles. Adv Exp Med Biol 620:34–47
16.
go back to reference Sau TK, Rogach AL (2012) Complex shaped metal nanoparticles, bottom-up syntheses and applications. Wiley-VCH, Weinheim Sau TK, Rogach AL (2012) Complex shaped metal nanoparticles, bottom-up syntheses and applications. Wiley-VCH, Weinheim
17.
go back to reference Mott DM (2008) Synthesis, characterization of nanoparticles. UMI, Ann Arbor Mott DM (2008) Synthesis, characterization of nanoparticles. UMI, Ann Arbor
18.
go back to reference Chang H-T, Chau L-K (2012) From bioimaging to biosensors, noble metal nanoparticles in biodetection. Pan Stanford Publishing Pte Ltd, Singapore Chang H-T, Chau L-K (2012) From bioimaging to biosensors, noble metal nanoparticles in biodetection. Pan Stanford Publishing Pte Ltd, Singapore
19.
go back to reference Niedelberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents, synthesis, formation, assembly and engineering, materials and processes. Springer, Heidelberg Niedelberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents, synthesis, formation, assembly and engineering, materials and processes. Springer, Heidelberg
20.
go back to reference Klimov VI (2004) Semiconductor and metal nanocrystals – synthesis, electronic structures, optical properties and characterization. Marcel Dekker, New York Klimov VI (2004) Semiconductor and metal nanocrystals – synthesis, electronic structures, optical properties and characterization. Marcel Dekker, New York
21.
go back to reference Rotello VM (2004) Nanoparticle building blocks for nanotechnology. Springer, Heidelberg Rotello VM (2004) Nanoparticle building blocks for nanotechnology. Springer, Heidelberg
22.
go back to reference Astruc D (2008) Nanoparticles in catalysis. Wiley-VCH, Weinheim Astruc D (2008) Nanoparticles in catalysis. Wiley-VCH, Weinheim
23.
go back to reference Rao CNR, Thomas PJ, Kulkarni GU (2007) Nanoparticles – synthesis, preparation, and applications. Springer, Heidelberg Rao CNR, Thomas PJ, Kulkarni GU (2007) Nanoparticles – synthesis, preparation, and applications. Springer, Heidelberg
24.
go back to reference Mariscal MM, Oviedo OA, Leiva EPM (2013) Model clusters and nanoalloys – from models to applications. Springer, Heidelberg Mariscal MM, Oviedo OA, Leiva EPM (2013) Model clusters and nanoalloys – from models to applications. Springer, Heidelberg
25.
go back to reference McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, the gold book, vol 2. Blackwell, Oxford McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, the gold book, vol 2. Blackwell, Oxford
26.
go back to reference Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. J Chem Soc Chem Commun 96–98 Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. J Chem Soc Chem Commun 96–98
27.
go back to reference Duff DG, Curtis AC, Edwards PP, Jefferson DA, Johnson BFG, Kirkland AI, Logan DE (1987) The morphology and microstructure of colloidal silver and gold. Angew Chem Int Ed Engl 26:676–678 Duff DG, Curtis AC, Edwards PP, Jefferson DA, Johnson BFG, Kirkland AI, Logan DE (1987) The morphology and microstructure of colloidal silver and gold. Angew Chem Int Ed Engl 26:676–678
29.
go back to reference Mingos DMP (1996) Gold – a flexible friend in cluster chemistry. J Chem Soc Dalton Trans 561–566 Mingos DMP (1996) Gold – a flexible friend in cluster chemistry. J Chem Soc Dalton Trans 561–566
30.
go back to reference Mingos DMP (1993) Recent developments in the cluster chemistry of gold. Chemistry of the Copper and Zinc Triads. Roy Soc Chem Spec Publ 131:189–197 Mingos DMP (1993) Recent developments in the cluster chemistry of gold. Chemistry of the Copper and Zinc Triads. Roy Soc Chem Spec Publ 131:189–197
31.
go back to reference Mingos DMP (1992) High-nuclearity clusters of the transition metals and a re-evaluation of the cluster surface analogy. J Cluster Sci 3:397–409 Mingos DMP (1992) High-nuclearity clusters of the transition metals and a re-evaluation of the cluster surface analogy. J Cluster Sci 3:397–409
32.
go back to reference Mingos DMP, Watson MJ (1992) Heteronuclear gold cluster compounds. Adv Inorg Chem 39:327–399 Mingos DMP, Watson MJ (1992) Heteronuclear gold cluster compounds. Adv Inorg Chem 39:327–399
33.
go back to reference Mingos DMP, Watson MJ (1991) TMC literature highlights – 27. Recent developments in the homo- and hetero-metallic cluster compounds of gold. Trans Met Chem 16:285–287 Mingos DMP, Watson MJ (1991) TMC literature highlights – 27. Recent developments in the homo- and hetero-metallic cluster compounds of gold. Trans Met Chem 16:285–287
34.
go back to reference Mingos DMP (1984) Structure and bonding in cluster compounds of gold. Polyhedron 3:1289–1297 Mingos DMP (1984) Structure and bonding in cluster compounds of gold. Polyhedron 3:1289–1297
35.
go back to reference Hall KP, Mingos DMP (1984) Homo- and heteronuclear cluster compounds of gold. Prog Inorg Chem 32:237–325 Hall KP, Mingos DMP (1984) Homo- and heteronuclear cluster compounds of gold. Prog Inorg Chem 32:237–325
36.
go back to reference Mingos DMP (1984) Gold cluster compounds. Are they metals in miniature? Gold Bull (Geneva) 17:5–12 Mingos DMP (1984) Gold cluster compounds. Are they metals in miniature? Gold Bull (Geneva) 17:5–12
37.
go back to reference Mingos DMP (1982) Some theoretical and structural aspects of gold cluster chemistry. Phil Trans Roy Soc (Lond) 308:75–83 Mingos DMP (1982) Some theoretical and structural aspects of gold cluster chemistry. Phil Trans Roy Soc (Lond) 308:75–83
38.
go back to reference Mingos DMP (1980) Theoretical and structural studies on organometallic cluster molecules. Pure Appl Chem 52:705–712 Mingos DMP (1980) Theoretical and structural studies on organometallic cluster molecules. Pure Appl Chem 52:705–712
39.
go back to reference Steggerda JJ, Bour JJ, van der Velden JWA (1982) Preparation and properties of gold cluster compounds. Rec des Travaux Chimiques des Pays-Bas 101:164–170 Steggerda JJ, Bour JJ, van der Velden JWA (1982) Preparation and properties of gold cluster compounds. Rec des Travaux Chimiques des Pays-Bas 101:164–170
40.
go back to reference Kanters RPF, Schlebos PPJ, Bour JJ, Wijnhoven J, van den Berg JE, Steggerda JJ (1990) Isonitrile-containing platinum–gold phosphine clusters. J Organomet Chem 388:233–242 Kanters RPF, Schlebos PPJ, Bour JJ, Wijnhoven J, van den Berg JE, Steggerda JJ (1990) Isonitrile-containing platinum–gold phosphine clusters. J Organomet Chem 388:233–242
41.
go back to reference van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1982) Gold clusters preparation, X-ray analysis, gold-197 Mössbauer and 31P{1H} NMR spectroscopy. Inorg Chem 21:4321–4324 van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1982) Gold clusters preparation, X-ray analysis, gold-197 Mössbauer and 31P{1H} NMR spectroscopy. Inorg Chem 21:4321–4324
42.
go back to reference Kanters RPF, Steggerda JJ (1990) Recognition of torroidal and spherical geometries in metal clusters of gold. J Cluster Sci 1:229–239 Kanters RPF, Steggerda JJ (1990) Recognition of torroidal and spherical geometries in metal clusters of gold. J Cluster Sci 1:229–239
43.
go back to reference Zeng C, Jin R (2014) Gold nanoclusters: size-controlled synthesis and crystal structures. Struct Bond (Ed Mingos DMP) (in press) Zeng C, Jin R (2014) Gold nanoclusters: size-controlled synthesis and crystal structures. Struct Bond (Ed Mingos DMP) (in press)
44.
go back to reference Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 129–154 Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 129–154
45.
go back to reference Pyykkö P, Mendizabal F (1997) Theory of the d10–d10 closed-shell attraction. II. Long-distance behavior and non-additive effects in dimers and trimers of type [(X-Au-L)n] (n = 2, 3; X = Cl, I, H; L = PH3, PMe3, –N ≡ CH). Chem Eur J 3:1458–1465 Pyykkö P, Mendizabal F (1997) Theory of the d10–d10 closed-shell attraction. II. Long-distance behavior and non-additive effects in dimers and trimers of type [(X-Au-L)n] (n = 2, 3; X = Cl, I, H; L = PH3, PMe3, –N ≡ CH). Chem Eur J 3:1458–1465
46.
go back to reference Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131:11666–11667 Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131:11666–11667
47.
go back to reference Dass A, Holt K, Parker JF, Feldberg MRW (2008) Mass spectrometrically detected statistical aspects of ligand populations in mixed monolayer Au25L18 nanoparticles. J Phys Chem C 112:20276–20283 Dass A, Holt K, Parker JF, Feldberg MRW (2008) Mass spectrometrically detected statistical aspects of ligand populations in mixed monolayer Au25L18 nanoparticles. J Phys Chem C 112:20276–20283
48.
go back to reference Malatesta L (1975) Cluster compounds of gold. Gold Bull 8:48–52 Malatesta L (1975) Cluster compounds of gold. Gold Bull 8:48–52
49.
go back to reference Naldini L, Cariaati F, Simonetta G, Malatesta L (1965) Gold tertiary phosphine derivatives with intermetallic bonds. J Chem Soc Chem Commun 212–213 Naldini L, Cariaati F, Simonetta G, Malatesta L (1965) Gold tertiary phosphine derivatives with intermetallic bonds. J Chem Soc Chem Commun 212–213
50.
go back to reference Malatesta L, Naldini L, Simonetta G, Cariati F (1966) Triphenylposphine gold(0)-gold(I) compounds. Coord Chem Rev 1:255–262 Malatesta L, Naldini L, Simonetta G, Cariati F (1966) Triphenylposphine gold(0)-gold(I) compounds. Coord Chem Rev 1:255–262
51.
go back to reference McPartlin M, Mason R, Malatesta L (1969) Custer compounds of gold(0)–gold(I). J Chem Soc Chem Commun 334 McPartlin M, Mason R, Malatesta L (1969) Custer compounds of gold(0)–gold(I). J Chem Soc Chem Commun 334
52.
go back to reference Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Galis GHM, van der Velden JWA (1981) Au55(PPh3)12Cl6 – a gold cluster of unusual size. Chem Ber 114:3634–42 Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Galis GHM, van der Velden JWA (1981) Au55(PPh3)12Cl6 – a gold cluster of unusual size. Chem Ber 114:3634–42
53.
go back to reference Wallenberg LR, Bovin JO, Schmid G (1985) Au55(PPh3)12Cl6 – TEM study of a gold cluster of unusual size. Surf Sci 156:256–264 Wallenberg LR, Bovin JO, Schmid G (1985) Au55(PPh3)12Cl6 – TEM study of a gold cluster of unusual size. Surf Sci 156:256–264
54.
go back to reference Schmid G (1985) Developments in transition metal cluster chemistry: the way to large clusters. Struct Bond 62:52–85 Schmid G (1985) Developments in transition metal cluster chemistry: the way to large clusters. Struct Bond 62:52–85
55.
go back to reference Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 121–122 Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 121–122
56.
go back to reference Rapoport DH, Vogel W, Coelfen H, Schlogegel R (1997) Ligand stabilised clusters: reinvestigation of the structure of Au55(PPh3)12Cl6. J Phys Chem 101:4175–4183 Rapoport DH, Vogel W, Coelfen H, Schlogegel R (1997) Ligand stabilised clusters: reinvestigation of the structure of Au55(PPh3)12Cl6. J Phys Chem 101:4175–4183
57.
go back to reference Brown LO, Hutchinson JE (1997) Convenient preparation of stable narrow-dispersity gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119:12384 Brown LO, Hutchinson JE (1997) Convenient preparation of stable narrow-dispersity gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119:12384
58.
go back to reference Broda J, Schmid G, Simon U (2013) Size and ligand specific response of gold clusters and nanoparticles: challenges and perspectives. Struct Bond (Ed Mingos DMP) Broda J, Schmid G, Simon U (2013) Size and ligand specific response of gold clusters and nanoparticles: challenges and perspectives. Struct Bond (Ed Mingos DMP)
59.
go back to reference Teo BK, Shi X, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:1:9:1 layered structure: a novel 39 metal atom cluster [Au39Cl6(PPh3)14]Cl2 with an interstitial gold in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745 Teo BK, Shi X, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:1:9:1 layered structure: a novel 39 metal atom cluster [Au39Cl6(PPh3)14]Cl2 with an interstitial gold in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745
60.
go back to reference Teo BK, Zhang H (1995) Polyicosahedracity: icosahedraon to icosahedrons of icosahedral growth pathway to bimetallic and trimetallic Au, Ag, M (M = Ni, Pd, Pt) supraclusters – synthetic strategies and stereochemical principles. Coord Chem Rev 143:611–636 Teo BK, Zhang H (1995) Polyicosahedracity: icosahedraon to icosahedrons of icosahedral growth pathway to bimetallic and trimetallic Au, Ag, M (M = Ni, Pd, Pt) supraclusters – synthetic strategies and stereochemical principles. Coord Chem Rev 143:611–636
61.
go back to reference Walter M, Akola J, Lopez-Acevedo O, Jadinsky PD, Calero G, Ackerson CJ, Whetten RL, Gronbeck H, Häkkinen H (2008) A unified view of ligand protected gold clusters as a super atom complexes. Proc Natl Acad Sci U S A 105:9157–9162 Walter M, Akola J, Lopez-Acevedo O, Jadinsky PD, Calero G, Ackerson CJ, Whetten RL, Gronbeck H, Häkkinen H (2008) A unified view of ligand protected gold clusters as a super atom complexes. Proc Natl Acad Sci U S A 105:9157–9162
62.
go back to reference Häkkinen H, Barnett RN, Landman U (1999) Electronic structure of passivated [Au38(SCH3)24] nanocrystal. Phys Rev Lett 82:3264 Häkkinen H, Barnett RN, Landman U (1999) Electronic structure of passivated [Au38(SCH3)24] nanocrystal. Phys Rev Lett 82:3264
63.
go back to reference Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer protected gold nanoparticle at 1.1A resolution. Science 318:430–433 Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer protected gold nanoparticle at 1.1A resolution. Science 318:430–433
64.
go back to reference Price R, Whetten RL (2007) Nano-golden order. Science 318:407–408 Price R, Whetten RL (2007) Nano-golden order. Science 318:407–408
65.
go back to reference Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37–59:1847–1859 Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37–59:1847–1859
66.
go back to reference Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720 Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720
67.
go back to reference Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75 Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75
68.
go back to reference Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707 Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707
69.
go back to reference Frens G (1972) Particle size and sol stability in metal colloids. Colloid Polym Sci 250:736–741 Frens G (1972) Particle size and sol stability in metal colloids. Colloid Polym Sci 250:736–741
70.
go back to reference Frens G (1973) Controlled nucleation for the regulation of the particle size in mono-disperse gold suspensions. Nature (London) Phys Sci 241:20–22 Frens G (1973) Controlled nucleation for the regulation of the particle size in mono-disperse gold suspensions. Nature (London) Phys Sci 241:20–22
71.
go back to reference Pong BK et al (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287 Pong BK et al (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287
72.
go back to reference Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043 Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043
73.
go back to reference Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802 Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802
74.
go back to reference Kiely CJ, Fink J, Brust M, Walker M, Bethell D, Schiffrin DJ (1998) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Nature 396:444–446 Kiely CJ, Fink J, Brust M, Walker M, Bethell D, Schiffrin DJ (1998) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Nature 396:444–446
75.
go back to reference Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186 Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186
76.
go back to reference Giersig P, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413 Giersig P, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413
77.
go back to reference Daniel M-C, Astruc D (2004) Gold nanoparticles assembly, supramolecular chemistry, quantum size related properties, applications towards biology, catalysis and nanotechnology. Chem Rev 104:293–346 Daniel M-C, Astruc D (2004) Gold nanoparticles assembly, supramolecular chemistry, quantum size related properties, applications towards biology, catalysis and nanotechnology. Chem Rev 104:293–346
78.
go back to reference Manna A, Chen P, Akiyama H, Wei T, Tamada K, Knoll W (2003) Optimised photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15:20–28 Manna A, Chen P, Akiyama H, Wei T, Tamada K, Knoll W (2003) Optimised photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15:20–28
79.
go back to reference Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139 Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139
80.
go back to reference Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656 Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656
81.
go back to reference Wu Z, Suhan J, Jin RC (2009) One-Pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626 Wu Z, Suhan J, Jin RC (2009) One-Pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626
82.
go back to reference Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) Reactivity of monolayer-protected gold cluster molecules steric effects. J Am Chem Soc 120:1906–1911 Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) Reactivity of monolayer-protected gold cluster molecules steric effects. J Am Chem Soc 120:1906–1911
83.
go back to reference Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789 Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789
84.
go back to reference Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. Phys Chem B 105:3353–3357 Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. Phys Chem B 105:3353–3357
85.
go back to reference Kamei Y, Shichuba Y, Konishi K (2011) Generation of small clusters with unique geometries through cluster-cluster transformations; octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew Chem Int Ed 50:7442–7445 Kamei Y, Shichuba Y, Konishi K (2011) Generation of small clusters with unique geometries through cluster-cluster transformations; octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew Chem Int Ed 50:7442–7445
86.
go back to reference Guo WW, Yuan JP, Wang EK (2012) Organo-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange etching of gold nanoparticles and their electroluminesence. J Chem Soc Chem Commun 48:3076–3078 Guo WW, Yuan JP, Wang EK (2012) Organo-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange etching of gold nanoparticles and their electroluminesence. J Chem Soc Chem Commun 48:3076–3078
87.
go back to reference Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396 Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396
88.
go back to reference Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281 Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281
89.
go back to reference Jin R, Qian HF, Wu Z, Zhu Y, Zhu M, Mohanty A, Gay N (2010) Size focusing: a methodology for synthesising atomically precise gold clusters. Nanotechnology 21:2903–2910 Jin R, Qian HF, Wu Z, Zhu Y, Zhu M, Mohanty A, Gay N (2010) Size focusing: a methodology for synthesising atomically precise gold clusters. Nanotechnology 21:2903–2910
90.
go back to reference Pradeep T, Shibu ES (2011) Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem Mater 23:989–999 Pradeep T, Shibu ES (2011) Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem Mater 23:989–999
91.
go back to reference Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177 Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177
92.
go back to reference Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodispersed Au38(SC2H4Ph)24. Nanoclusters 3:3795–3803 Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodispersed Au38(SC2H4Ph)24. Nanoclusters 3:3795–3803
93.
go back to reference Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au104(SCH2CH2Ph)60. Nano Lett 9:4083–4087 Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au104(SCH2CH2Ph)60. Nano Lett 9:4083–4087
94.
go back to reference Xu Q, Wang SX, Liu Z, Xu GY, Meng SM, Zhu MZ (2013) Synthesis of selenato- protected Au18(SePh)14 nano-clusters. Nanoscale 5:1176–1182 Xu Q, Wang SX, Liu Z, Xu GY, Meng SM, Zhu MZ (2013) Synthesis of selenato- protected Au18(SePh)14 nano-clusters. Nanoscale 5:1176–1182
95.
go back to reference Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037 Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037
96.
go back to reference Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc:5261–5270 Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc:5261–5270
97.
go back to reference Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870 Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870
98.
go back to reference Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646 Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646
99.
go back to reference Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem 103:9394–9396 Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem 103:9394–9396
100.
go back to reference Whetten RL, Shafigullin MN, Khoury JT, Schaaff TG, Alvarez MM, Wilkinson A (1999) Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res 32:397–406 Whetten RL, Shafigullin MN, Khoury JT, Schaaff TG, Alvarez MM, Wilkinson A (1999) Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res 32:397–406
101.
go back to reference Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury J, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119:9279–9280 Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury J, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119:9279–9280
102.
go back to reference Shichubu Y, Negishi Y, Tsukada T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilised Au11 clusters. J Am Chem Soc 127:13464–13465 Shichubu Y, Negishi Y, Tsukada T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilised Au11 clusters. J Am Chem Soc 127:13464–13465
103.
go back to reference Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375 Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375
104.
go back to reference Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2007) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 129:11322 Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2007) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 129:11322
105.
go back to reference Dass A, Stevenson A, Dubay GB, Tracy JB, Murray RW (2008) MALDI-TOF nanoparticle mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J Am Chem Soc 130:5940–5946 Dass A, Stevenson A, Dubay GB, Tracy JB, Murray RW (2008) MALDI-TOF nanoparticle mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J Am Chem Soc 130:5940–5946
106.
go back to reference Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885 Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885
107.
go back to reference Qian HF, Jin R (2011) Ambient synthesis of Au104(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217 Qian HF, Jin R (2011) Ambient synthesis of Au104(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217
108.
go back to reference Alloisio M, Demartini A, Cuniberti C, Muniz-Miranda M, Giorgetti E, Giusti A (2008) Photopolymerization of diacetylene-capped gold nanoparticles. Phys Chem Chem Phys 10:2214–2220 Alloisio M, Demartini A, Cuniberti C, Muniz-Miranda M, Giorgetti E, Giusti A (2008) Photopolymerization of diacetylene-capped gold nanoparticles. Phys Chem Chem Phys 10:2214–2220
109.
go back to reference Pelka JB, Brust M, Gierlowski P, Paszkowsicz W, Schell N (2006) Structure and conductivity of self-assembled films of gold nanoparticles. Appl Phys Lett 89:063110–063113 Pelka JB, Brust M, Gierlowski P, Paszkowsicz W, Schell N (2006) Structure and conductivity of self-assembled films of gold nanoparticles. Appl Phys Lett 89:063110–063113
110.
go back to reference Corbierre MK, Bearens J, Beauvais J, Lennox RB (2006) Uniform one-dimensional arrays of tunable gold nanoparticles with tunable interparticle distances. Chem Mater 18:2628–2631 Corbierre MK, Bearens J, Beauvais J, Lennox RB (2006) Uniform one-dimensional arrays of tunable gold nanoparticles with tunable interparticle distances. Chem Mater 18:2628–2631
111.
go back to reference Vollenbroek FA, Bouten DCP, Trooster JP, van der Berg JP, Bour JJ (1978) Mössbauer investigation and novel synthesis of gold cluster compounds. Inorg Chem 17:1345–1347 Vollenbroek FA, Bouten DCP, Trooster JP, van der Berg JP, Bour JJ (1978) Mössbauer investigation and novel synthesis of gold cluster compounds. Inorg Chem 17:1345–1347
112.
go back to reference van der Velden JWA, Bour JJ, Vollenbroek FA, Beurskens PT, Smits JMM (1979) Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of [tris{bis(diphenylphosphino)methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J Chem Soc Chem Commun 1162–1163 van der Velden JWA, Bour JJ, Vollenbroek FA, Beurskens PT, Smits JMM (1979) Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of [tris{bis(diphenylphosphino)methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J Chem Soc Chem Commun 1162–1163
113.
go back to reference van der Velden JWA, Bour JJ, Beurskens PT, Dosman WP, Noordik JM, Kolenbrander M, Buskes JAKM (1984) Intermediates in the formation of gold clusters. Preparation and X-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6. Inorg Chem 23:146–151 van der Velden JWA, Bour JJ, Beurskens PT, Dosman WP, Noordik JM, Kolenbrander M, Buskes JAKM (1984) Intermediates in the formation of gold clusters. Preparation and X-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6. Inorg Chem 23:146–151
114.
go back to reference Lin ST, Franklin MT, Klabunde KJ (1986) Nonaqueous colloidal gold. Clustering of metal atoms in organic media – 12. Langmuir 2:259–260 Lin ST, Franklin MT, Klabunde KJ (1986) Nonaqueous colloidal gold. Clustering of metal atoms in organic media – 12. Langmuir 2:259–260
115.
go back to reference Cardines-Trevino G, Klabunde KJ, Dale EB (1987) Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media – 14. Langmuir 3:986–992 Cardines-Trevino G, Klabunde KJ, Dale EB (1987) Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media – 14. Langmuir 3:986–992
116.
go back to reference Belloni J, Delecourt MO, Leclerc C (1982) Radiation-induced preparation of metal catalysts: iridium aggregates. New J Chem 6:507–518 Belloni J, Delecourt MO, Leclerc C (1982) Radiation-induced preparation of metal catalysts: iridium aggregates. New J Chem 6:507–518
117.
go back to reference Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265 Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265
118.
go back to reference Treuger M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J Phys Chem B 102:1310–1321 Treuger M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J Phys Chem B 102:1310–1321
119.
go back to reference Zhang J, Du J, Man B, Liu Z, Jiang T, Zhang Z (2006) Sonochemical formation of single crystalline gold nanoclusters. Angew Chem Int Ed 118:1134–1137 Zhang J, Du J, Man B, Liu Z, Jiang T, Zhang Z (2006) Sonochemical formation of single crystalline gold nanoclusters. Angew Chem Int Ed 118:1134–1137
120.
go back to reference Uppal J, Kafizas A, Ewing MB, Parkin IP (2010) The effect of initiation method on the size, monodispersity and shapes of gold nanoparticles formed by the Turkevich method. New J Chem 24:2006–2014 Uppal J, Kafizas A, Ewing MB, Parkin IP (2010) The effect of initiation method on the size, monodispersity and shapes of gold nanoparticles formed by the Turkevich method. New J Chem 24:2006–2014
121.
go back to reference Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120; 9050–9056 Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120; 9050–9056
122.
go back to reference Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730 Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730
123.
go back to reference Shi W, Sahoo Y, Swihart MT (2004) Gold nanoparticles surface-terminated with bifunctional ligands. Colloids Surf A Physicochem Eng Asp 246:109–113 Shi W, Sahoo Y, Swihart MT (2004) Gold nanoparticles surface-terminated with bifunctional ligands. Colloids Surf A Physicochem Eng Asp 246:109–113
124.
go back to reference Li Z (2012) Scanning transmission electron microscopy studies of mono- and bi-metallic nanoclusters. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 213–245 Li Z (2012) Scanning transmission electron microscopy studies of mono- and bi-metallic nanoclusters. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 213–245
125.
go back to reference Chen Y, Palmer RE, Wilcoxon JP (2006) Sintering of passivated gold nanoparticles under the electron beam. Langmuir 22:2851–2855 Chen Y, Palmer RE, Wilcoxon JP (2006) Sintering of passivated gold nanoparticles under the electron beam. Langmuir 22:2851–2855
126.
go back to reference Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408 Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408
127.
go back to reference Martin JE, Odinek J, Wilcoxon JP, Anderson RA, Provencio PP (2003) Sintering of alkanethiol-capped gold and platinum nanoclusters. J Phys Chem B 107:430 Martin JE, Odinek J, Wilcoxon JP, Anderson RA, Provencio PP (2003) Sintering of alkanethiol-capped gold and platinum nanoclusters. J Phys Chem B 107:430
128.
go back to reference Horisberger M (1981) Colloidal gold: a cytochemical marker marker for light and fluorescent microscopy and for scanning electron microscopy. Scan Electron Microsc 2:9–31 Horisberger M (1981) Colloidal gold: a cytochemical marker marker for light and fluorescent microscopy and for scanning electron microscopy. Scan Electron Microsc 2:9–31
129.
go back to reference Wang ZL (2000) Transmission electron microscopy of shape controlled nano-crystals and their assemblies. J Phys Chem B 104:1153–1175 Wang ZL (2000) Transmission electron microscopy of shape controlled nano-crystals and their assemblies. J Phys Chem B 104:1153–1175
130.
go back to reference Li ZY, Young NP, Di Vecc M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three dimensional atomic – scale structure of size selected gold nanoclusters. Nature 451:46–48; Li ZY 213–247 in Ref. [13] Li ZY, Young NP, Di Vecc M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three dimensional atomic – scale structure of size selected gold nanoclusters. Nature 451:46–48; Li ZY 213–247 in Ref. [13]
131.
go back to reference Jiang D (2013) The expanding universe of thiolated gold nanoclusters and beyond. Nanoscale 5:7149–7160 Jiang D (2013) The expanding universe of thiolated gold nanoclusters and beyond. Nanoscale 5:7149–7160
132.
go back to reference Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755 Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755
133.
go back to reference Qian H, Zhu M, Lanni E, Zhu Y, Bier ME, Jin R (2009) Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J Phys Chem C 113:17599–17603 Qian H, Zhu M, Lanni E, Zhu Y, Bier ME, Jin R (2009) Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J Phys Chem C 113:17599–17603
134.
go back to reference Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803 Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803
135.
go back to reference Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118 Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118
136.
go back to reference Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013 Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013
137.
go back to reference Mingos DMP (1982) Steric effects in metal cluster chemistry. Inorg Chem 21:466–468 Mingos DMP (1982) Steric effects in metal cluster chemistry. Inorg Chem 21:466–468
138.
go back to reference Vollenbroek FA (1979) Ph D Thesis University of Nijmegen Vollenbroek FA (1979) Ph D Thesis University of Nijmegen
139.
go back to reference Krommenhoek PJ, Wang J, Hentz N, Johnston-Peck AC, Kozek KA, Kalyuzhny G, Tracy JB, Bulky A (2012) Cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. ACS Nano 6:4903–4911 Krommenhoek PJ, Wang J, Hentz N, Johnston-Peck AC, Kozek KA, Kalyuzhny G, Tracy JB, Bulky A (2012) Cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. ACS Nano 6:4903–4911
140.
go back to reference Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135:868–874 Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135:868–874
141.
go back to reference Harkness KM, Fenn LS, Cliffel DE, McLean JA (2010) Surface fragmentation of complexes from thiolate protected gold particles by mass spectrometry. Anal Chem 82:3061–3066 Harkness KM, Fenn LS, Cliffel DE, McLean JA (2010) Surface fragmentation of complexes from thiolate protected gold particles by mass spectrometry. Anal Chem 82:3061–3066
142.
go back to reference Whetten RL, Khoury JT, Alvarez MM, Marcos M, Murthy SM, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8:428–433 Whetten RL, Khoury JT, Alvarez MM, Marcos M, Murthy SM, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8:428–433
143.
go back to reference Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707 Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707
144.
go back to reference Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610 Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610
145.
go back to reference Arnold RJ, Reilly JP (1998) High-resolution time-of-flight mass spectra of alkanethiolate-coated gold nanocrystals. J Am Chem Soc 120:1528–1532 Arnold RJ, Reilly JP (1998) High-resolution time-of-flight mass spectra of alkanethiolate-coated gold nanocrystals. J Am Chem Soc 120:1528–1532
146.
go back to reference Dass A, Dubay George R, Fields-Zinna CA, Murray RW (2008) FAB mass spectrometry of Au25(SR)18 nanoparticles. Anal Chem (Washington, DC) 80:6845–6849 Dass A, Dubay George R, Fields-Zinna CA, Murray RW (2008) FAB mass spectrometry of Au25(SR)18 nanoparticles. Anal Chem (Washington, DC) 80:6845–6849
147.
go back to reference Dass A, Guo R, Tracy JB, Balasubramanian R, Douglas AD, Murray RW (2008) Gold nanoparticles with perfluorothiolate ligands. Langmuir 24:310–315 Dass A, Guo R, Tracy JB, Balasubramanian R, Douglas AD, Murray RW (2008) Gold nanoparticles with perfluorothiolate ligands. Langmuir 24:310–315
148.
go back to reference Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215 Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215
149.
go back to reference Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479 Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479
150.
go back to reference Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542 Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542
151.
go back to reference Shvartsburg A, Jarrold M (2000) Modeling Ion mobilities by scattering on electronic density isosurfaces-applied to silicon cluster anions. Chem Phys Lett 317:615–618 Shvartsburg A, Jarrold M (2000) Modeling Ion mobilities by scattering on electronic density isosurfaces-applied to silicon cluster anions. Chem Phys Lett 317:615–618
152.
go back to reference Weis P, Biersieller T, Volmer T, Kappes MM (2002) Au9 + rapid isomerizations at 140 K. J Chem Phys 117:9293–9297 Weis P, Biersieller T, Volmer T, Kappes MM (2002) Au9 + rapid isomerizations at 140 K. J Chem Phys 117:9293–9297
153.
go back to reference Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7 Au19, and Au20 clusters in the gas phase. Science (Washington DC) 321:674–676 Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7 Au19, and Au20 clusters in the gas phase. Science (Washington DC) 321:674–676
154.
go back to reference Clayden NJ, Dobson CM, Hall KP, Mingos DMP, Smith DJ (1985) Studies of gold cluster compounds using high-resolution phosphorus-31 solid-state nuclear magnetic resonance spectroscopy. Inorg Chem 25:1811–1814 Clayden NJ, Dobson CM, Hall KP, Mingos DMP, Smith DJ (1985) Studies of gold cluster compounds using high-resolution phosphorus-31 solid-state nuclear magnetic resonance spectroscopy. Inorg Chem 25:1811–1814
155.
go back to reference Diesveld JW, Menger EM, Edzes HT, Veeman WS (1980) J Am Chem Soc 102:7935 Diesveld JW, Menger EM, Edzes HT, Veeman WS (1980) J Am Chem Soc 102:7935
156.
go back to reference van der Velden JWA, Bour JJ, Bosman WP, Noordik JH, Beurskens PT (1984) Electrochemical preparation of [Au9(PPh3)8]+. A comparative study of structures. Receuil (J R Neth Chem Soc) 103:13–16 van der Velden JWA, Bour JJ, Bosman WP, Noordik JH, Beurskens PT (1984) Electrochemical preparation of [Au9(PPh3)8]+. A comparative study of structures. Receuil (J R Neth Chem Soc) 103:13–16
157.
go back to reference van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1983) Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, X-ray analysis, and gold-197 Mössbauer and phosphorus-31{proton} NMR spectra. Inorg Chem 21:4321–4324 van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1983) Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, X-ray analysis, and gold-197 Mössbauer and phosphorus-31{proton} NMR spectra. Inorg Chem 21:4321–4324
158.
go back to reference Sharma R, Holland GP, Solomon VC, Zimmermann H, Schiffenhaus S, Amin SA, Buttry DA, Yarger JL (2009) NMR characterization of ligand binding and exchange dynamics in triphenylphosphine-capped gold nanoparticles. J Phys Chem C 113:16387–16393 Sharma R, Holland GP, Solomon VC, Zimmermann H, Schiffenhaus S, Amin SA, Buttry DA, Yarger JL (2009) NMR characterization of ligand binding and exchange dynamics in triphenylphosphine-capped gold nanoparticles. J Phys Chem C 113:16387–16393
159.
go back to reference Salorinne K, Lahtinen T, Koivisto J, Kalenius E, Nissinen M, Pettersson M, Häkkinen H (2013) Non-destructive size determination of thiol-stabilised gold nanoclusters in solution by diffusion ordered NMR spectroscopy. Anal Chem 85:3489–3492 Salorinne K, Lahtinen T, Koivisto J, Kalenius E, Nissinen M, Pettersson M, Häkkinen H (2013) Non-destructive size determination of thiol-stabilised gold nanoclusters in solution by diffusion ordered NMR spectroscopy. Anal Chem 85:3489–3492
160.
go back to reference Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942 Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942
161.
go back to reference Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1988) Iron-57 and gold-197 Mössbauer spectro-scopic investigation of the bonding in two gold-iron cluster compounds. Inorg Chem 27:781–783 Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1988) Iron-57 and gold-197 Mössbauer spectro-scopic investigation of the bonding in two gold-iron cluster compounds. Inorg Chem 27:781–783
162.
go back to reference Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1989) Gold-197 Mössbauer spectra and the bonding of some gold–gold and gold–platinum clusters. J Chem Soc Dalton Trans Inorg Chem 539–543 Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1989) Gold-197 Mössbauer spectra and the bonding of some gold–gold and gold–platinum clusters. J Chem Soc Dalton Trans Inorg Chem 539–543
163.
go back to reference Battistoni C, Mattogno G, Mingos DMP (1984) Characterization of some gold cluster compounds by X-ray photoelectron spectroscopy. Inorg Chim Acta 33:107–113 Battistoni C, Mattogno G, Mingos DMP (1984) Characterization of some gold cluster compounds by X-ray photoelectron spectroscopy. Inorg Chim Acta 33:107–113
164.
go back to reference Arfelli M, Battistoni C, Mattogno G, Mingos DMP (1989) X-ray photoelectron spectroscopic evidence for the electrophilic character of the AuL [gold-ligand] fragment in the cluster compound (Pt3Au(μ2-CO)3 L4)PF6. J Elect Spectr Rel Phenomena 49:273–277 Arfelli M, Battistoni C, Mattogno G, Mingos DMP (1989) X-ray photoelectron spectroscopic evidence for the electrophilic character of the AuL [gold-ligand] fragment in the cluster compound (Pt3Au(μ2-CO)3 L4)PF6. J Elect Spectr Rel Phenomena 49:273–277
165.
go back to reference Chevrier DM, Chatt A, Sham TK, Zhang P (2013) A comparative EXAFS study of gold-thiolate nanoparticles and nanoclusters. J Phys Conf Ser 430:120–129 Chevrier DM, Chatt A, Sham TK, Zhang P (2013) A comparative EXAFS study of gold-thiolate nanoparticles and nanoclusters. J Phys Conf Ser 430:120–129
166.
go back to reference Yao T, Sun Z, Li Y, Pan Z, Wei H, Xie Y, Nomura M, Niwa Y, Yan W, Wu Z, Jiang Y, Liu Q, Wei S (2010) Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc 132:7696–7701 Yao T, Sun Z, Li Y, Pan Z, Wei H, Xie Y, Nomura M, Niwa Y, Yan W, Wu Z, Jiang Y, Liu Q, Wei S (2010) Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc 132:7696–7701
167.
go back to reference Abecassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727 Abecassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727
168.
go back to reference Coffer JL, Shapley JR, Drickamer HG (1990) Pressure-induced skeletal isomerization of octakis-(triphenylphosphine)nonagold(3+) hexafluorophosphate in the solid state. Inorg Chem 29:3000–3001 Coffer JL, Shapley JR, Drickamer HG (1990) Pressure-induced skeletal isomerization of octakis-(triphenylphosphine)nonagold(3+) hexafluorophosphate in the solid state. Inorg Chem 29:3000–3001
169.
go back to reference Coffer JL, Shapley JR, Drickamer HG (1990) The effect of pressure on the surface plasmon absorption spectrum of colloidal gold and silver particles. J Am Chem Soc 112:3736–3742 Coffer JL, Shapley JR, Drickamer HG (1990) The effect of pressure on the surface plasmon absorption spectrum of colloidal gold and silver particles. J Am Chem Soc 112:3736–3742
170.
go back to reference Saha K, Agasti SS, Kim C, Li X (2012) Gold sensors in chemical and biological systems. Chem Rev 112:2739–2779 Saha K, Agasti SS, Kim C, Li X (2012) Gold sensors in chemical and biological systems. Chem Rev 112:2739–2779
171.
go back to reference Zhang Y, Fei W-W, Jia N-Q (2005) A facile method for the detection of DNA using gold nanoparticle probes coupled with dynamic light scattering. Nanoscale Lett 7:564–569 Zhang Y, Fei W-W, Jia N-Q (2005) A facile method for the detection of DNA using gold nanoparticle probes coupled with dynamic light scattering. Nanoscale Lett 7:564–569
172.
go back to reference Chah S, Hammond MR, Zare PN (2005) Gold nanoparticles as a colorometric sensor for protein conformational changes. Chem Biol 12:323–328 Chah S, Hammond MR, Zare PN (2005) Gold nanoparticles as a colorometric sensor for protein conformational changes. Chem Biol 12:323–328
173.
go back to reference Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933–940 Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933–940
174.
go back to reference Ali ME, Hashim U, Mustafa S, Che-Man YB, Islam KH (2012) Development of swine-specific DNA markers for biosensor-based halal authentication. Genet Mol Res 11:1762–1772 Ali ME, Hashim U, Mustafa S, Che-Man YB, Islam KH (2012) Development of swine-specific DNA markers for biosensor-based halal authentication. Genet Mol Res 11:1762–1772
175.
go back to reference Eustis S, El-Sayed M (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and non-radiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217 Eustis S, El-Sayed M (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and non-radiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217
176.
go back to reference Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231 Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231
177.
go back to reference Johnston RL (2012) In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 1–42 Johnston RL (2012) In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 1–42
178.
go back to reference Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167 Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167
179.
go back to reference Horisberger M, Rosset JJ (1977) Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem 25:295–305 Horisberger M, Rosset JJ (1977) Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem 25:295–305
180.
go back to reference Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673 Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673
181.
go back to reference Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatinum. J Am Chem Soc 132:4678–4684 Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatinum. J Am Chem Soc 132:4678–4684
182.
go back to reference Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold particles. Lasers Med Sci 23:217–228 Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold particles. Lasers Med Sci 23:217–228
183.
go back to reference Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831 Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831
184.
go back to reference Hone DC, Walker PI, Evans-Gowing R, Fitzgerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyanin, stabilised gold-nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987 Hone DC, Walker PI, Evans-Gowing R, Fitzgerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyanin, stabilised gold-nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987
185.
go back to reference Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible Low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417 Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible Low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417
186.
go back to reference Okazaki S, Moers J (2005) Lithography. In: Waser R (ed) Nanoelectronics and information technology, 2nd edn. Wiley-VCH, Weinheim, pp 221–247 Okazaki S, Moers J (2005) Lithography. In: Waser R (ed) Nanoelectronics and information technology, 2nd edn. Wiley-VCH, Weinheim, pp 221–247
187.
go back to reference Grabert H (1991) Single charge tunneling: a brief introduction. Z Phys B 85:319–325 Grabert H (1991) Single charge tunneling: a brief introduction. Z Phys B 85:319–325
188.
go back to reference Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405–1453 Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405–1453
189.
go back to reference Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272 Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272
190.
go back to reference Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609 Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609
191.
go back to reference Macfarlane RJ, O’Brien MN, Petrosko SH, Mirkin CA (2013) Nucleic acid-modified nanostructures as programmable atom equivalents: forging a New “table of elements”. Angew Chem Int Ed 52:5688–5698 Macfarlane RJ, O’Brien MN, Petrosko SH, Mirkin CA (2013) Nucleic acid-modified nanostructures as programmable atom equivalents: forging a New “table of elements”. Angew Chem Int Ed 52:5688–5698
192.
go back to reference Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910 Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910
193.
go back to reference Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261 Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261
194.
go back to reference Hou S, Hu X, Wen T, Wenqi L, Wu X (2013) Core-shell noble metal nanostructures templated by gold nanorods. Adv Mater 25:3857–3862 Hou S, Hu X, Wen T, Wenqi L, Wu X (2013) Core-shell noble metal nanostructures templated by gold nanorods. Adv Mater 25:3857–3862
195.
go back to reference Alkilany AM, Thompson LB, Buolos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199 Alkilany AM, Thompson LB, Buolos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199
196.
go back to reference Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730 Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730
197.
go back to reference Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2008) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554 Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2008) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554
198.
go back to reference Jain PK, Rivest JB (2005) Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 42:89–96 Jain PK, Rivest JB (2005) Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 42:89–96
199.
go back to reference Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693 Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693
200.
go back to reference Bond GC, Sermon PA (1973) Gold catalysts in olefin hydrogenation. Transmutation of catalytic properties. Gold Bull (Geneva) 6:102–105 Bond GC, Sermon PA (1973) Gold catalysts in olefin hydrogenation. Transmutation of catalytic properties. Gold Bull (Geneva) 6:102–105
201.
go back to reference Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett 16:405–406 Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett 16:405–406
202.
go back to reference Haruta M, Yamada N, Kobayashi T, Ijima S (1989) Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309 Haruta M, Yamada N, Kobayashi T, Ijima S (1989) Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309
203.
go back to reference Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166 Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166
204.
go back to reference Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295 Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295
205.
go back to reference Christensen CH, Jorgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed 45:4648–4651 Christensen CH, Jorgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed 45:4648–4651
206.
go back to reference Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of non-metallic properties. Science (Washington DC) 281:1647–1650 Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of non-metallic properties. Science (Washington DC) 281:1647–1650
207.
go back to reference Boyen HG, Kaestle G, Weigl F, Koslowski B, Dietrich C, Ziemann P (2002) Oxidation-resistant gold-55 clusters. Science (Washington DC) 297:1533–1536 Boyen HG, Kaestle G, Weigl F, Koslowski B, Dietrich C, Ziemann P (2002) Oxidation-resistant gold-55 clusters. Science (Washington DC) 297:1533–1536
208.
go back to reference Lopez N, Novorsky JK, Catalytic CO (2002) Oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263 Lopez N, Novorsky JK, Catalytic CO (2002) Oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263
209.
go back to reference Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. J Chem Soc Chem Commun 18:2058–2059 Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. J Chem Soc Chem Commun 18:2058–2059
210.
go back to reference Haruta M (1997) Novel catalysis of gold deposited on metal oxides. Catal Surv Jpn 1:61–73 Haruta M (1997) Novel catalysis of gold deposited on metal oxides. Catal Surv Jpn 1:61–73
211.
go back to reference Bond GC, Thompson DT (2000) Gold catalysed oxidation of carbon monoxide. Gold Bull 33:41–51 Bond GC, Thompson DT (2000) Gold catalysed oxidation of carbon monoxide. Gold Bull 33:41–51
212.
go back to reference Sinha AK, Seelan S, Tsuboata S, Haruta M (2004) Vital Roe of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43:1546–1548 Sinha AK, Seelan S, Tsuboata S, Haruta M (2004) Vital Roe of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43:1546–1548
213.
go back to reference Hutchings GC, Edwards JK (2012) Application of gold nanoparticles in catalysis. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, Holland, pp 249–293 Hutchings GC, Edwards JK (2012) Application of gold nanoparticles in catalysis. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, Holland, pp 249–293
214.
go back to reference Okazaki K, Ichikawa S, Maeda Y, Haruta M, Kohyama M (2005) Electronic structures of gold supported on TiO2. Appl Catal A Gen 291:37–44; 45–54 Okazaki K, Ichikawa S, Maeda Y, Haruta M, Kohyama M (2005) Electronic structures of gold supported on TiO2. Appl Catal A Gen 291:37–44; 45–54
215.
go back to reference Nilius N, Risse T, Shaikhutdinov S, Sterrer M, Freund H-J (2013) Metal catalysts based on gold clusters. Struct (Ed Mingos DMP) Nilius N, Risse T, Shaikhutdinov S, Sterrer M, Freund H-J (2013) Metal catalysts based on gold clusters. Struct (Ed Mingos DMP)
216.
go back to reference Li Z, Johnston RL (2014) Nanoalloys of gold. Struct Bond (Ed Mingos DMP) Li Z, Johnston RL (2014) Nanoalloys of gold. Struct Bond (Ed Mingos DMP)
217.
go back to reference Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910 Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910
218.
go back to reference Hashmi ASK (2004) Homogeneous catalysis by gold. Gold Bull 37:51–65 Hashmi ASK (2004) Homogeneous catalysis by gold. Gold Bull 37:51–65
219.
go back to reference Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reactions of aldehydes with isocyanates catalysed by a chiral ferrocenyl-phosphine gold(I) complex. J Am Chem Soc 108:6405–6406 Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reactions of aldehydes with isocyanates catalysed by a chiral ferrocenyl-phosphine gold(I) complex. J Am Chem Soc 108:6405–6406
220.
go back to reference Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem 110:1475–1478 Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem 110:1475–1478
221.
go back to reference Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem Int Ed 37:1415–1418 Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem Int Ed 37:1415–1418
222.
go back to reference Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem 112:2382–2385 Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem 112:2382–2385
223.
go back to reference Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem Int Ed 39:2285–2288 Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem Int Ed 39:2285–2288
224.
go back to reference Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold(I) catalysed arene synthesis. J Am Chem Soc 122:11553–11554 Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold(I) catalysed arene synthesis. J Am Chem Soc 122:11553–11554
225.
go back to reference Dyker G (2000) An Eldorado for homogeneous catalysis. Angew Chem 39:4237–4239 Dyker G (2000) An Eldorado for homogeneous catalysis. Angew Chem 39:4237–4239
Metadata
Title
Historical Introduction to Gold Colloids, Clusters and Nanoparticles
Author
D. Michael P. Mingos
Copyright Year
2014
DOI
https://doi.org/10.1007/430_2013_138

Premium Partners